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PREZFACE

Thia teXt aims at restoring what is, in a penSe, a "lost" subject. There

is widesprdia4 practice of irieludineanalytic geometry.tatarial in the colon.,

111B program; but when:this is-accomplished, Analytic geometry, as a cOurse of

study, disppears and, wha).remains of it is the.iaxt immediately useful to&

study of calculus. You will find a much more varied selection of topics in

this book than you would see in a cMu1us course.

In a booi devoted to the interplay betveen.algebra and geometry you would

expect,lo be.caildd uponfto exhibit considerable dexterity in algebraic mani

pulations,ap well ag to recall previous experiences with geometric figures and

theorele. You will not be disappointed. It is alio assix,med -that yb)1 know the

elementary:notions of trigonometry.

A deliberate effort was.made t; *tie this text to 'ProViouB MSG lbxts; so,

lyou will find the usual language of sets, ordered Pairs, nalmber properties,

etc.,with wh?ch you have had some acquaintance. This flavor is perhapg what

distinguisheg this book from others in the field. .,For example, the-t4atMe;It
IF

of coordinate systefflo in Chapter 2 depends upon the.po tulates of SMSG

141,geometry.

.Here)is one worsl,of advice. The early chapters a re fundamental to every-

thihg which follows. Study them until they seeireto be old,f±iends; do nqt

hesitate to return to them later for a fresh look. Another .thing you might

watch. The related,ideas of vectors0-direction numl4rs, and parameters are

Used extensively, tb sitplify and unify the varidus topics. Look for this

feature. .

The theoremg ana figures are nuMbered serially within each chapter; e.g.,

Theorem 8-3 is the*,third theorem of Chapter 8, Pigure 5-2 is the sectmd figure
-

to appear in Chapter 5. Ifan equation is to be referred too, it is aesigned
k . .

a AUnting nuMber, which is then displayed in the left mahin. The counting

begins at one for each section. Definitions are not numbered but may be foUnd

by referring.to the Index.

The writers hope they have recreated the beauty of And,!Srtic Geometry in a

neW SMSG setting, and they ftiOther hope that you will enjoy andaprofit by the

adventure you are about to undertake. Bldn'Yoyage.
. 6
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I. .1te-1

Chapter .1

ANALYT= GEOMETRY

1-1. What Is Analytic Gebmet

Geometry has beenlatudied stenisticali,for over two thousand years.

EUclid's Elements, which'vas wri ten abaut 300 B.C., is perhapathe moot

influential mathematics toxtbook ver published: There are undoubted.Wmany

'traces or it to be found in the text you Ased in your high'sdhool courie.

Until.the llth century, geome was studied.by Wh4 are known as

synthetic methods. The postulates ealt with sucii. geometric notioqoa# point,

jine4 and angle, and littleior no use was made 6f numbers. 1h the Elements,

for example; line segments do not have lengths.

Then in the early part of thil7tlicentury,there pccurre p. the greatest

advance in geometry sinceEnolig. It was not the-work .or one man--auch

adiancs seldom, ifever, are. Inbtead, it occvrrid When the "int.ellectual,

climate" was ready !or it. -Neveitheless,-there was one Man Whose,name is so

universally associeted with the new geometry that you ahould know it. That

man vas Rent Descartes, a French mathematician and phligsoPherit.who lived

fram 1596 to 1650. The essential .noVelty in .the new geometry wss tiat it

used-algebrsic methods to solve geometric problems. Thutilt brought together

two subjects width until then had remained almost independent.

The,link between geometry and algebra is forged toe.coordiniite sysiems.

In essence, a coordinate system is a correspondence 'between the points of-same

II space" and certain ordered sets of numbers. .(We ute quotation"marks because

the space m ay be a curve, or the surface of a sphere, or some other set of

points not UMIR14 th6ught of as a epace.) .YOu are already familiar with a

nuMber of different coordinate systema,'Somegetudied in earlier mathematics'

courses, others met with in other fields, suCh as geograwohy. In element&ry

algebra you introduced coordinatam into a plane b; drajng two mutuelly
)4(

-perpendicular lines (axes) in the plane, choosing a positive direction on etch

and a unit length common ta both, and associating with eachopoint the ordered

pair,of Veal nuabers reprlsenting the directed distances of.the'point from t4e

two axes. The location of a point on the earth's surface it often.given tn
A .

' 1
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termn of latitude and 1 ngitude. An artilleryman sometimes locates'a target

by saying how far awAy.i\t ts, and'in What airectiop it lies with respect to

an arbiti:ary fixed direction,established by betting up an aiming post. This

is what is called a polar\coprdinate-systedlor-the plane.

a

Target

Artilleryman.

Aiming post
.

.

Fidire 1-1.
13'

(A point P on atright eircularcylinder could be identified by means of
a

the directed distance z, andthe Measure-pf thp angle 0 shbwn im

1

Figure 1-2

4
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If, instead of one right circular cylinder, we considersall 8=4 cylinders

alth the same axis, pe can locate any Feint in space by giviing the iadips r

of the cylinder On 'which it lies and 1'4 z- 9- coordinates on that

cylinder. The result is called a cylindrical cc dinate.pystem for space.

A fly on a doughnut (a point on a torup) could ba localled bY means of

the reasures (in 'degrees, radians,eilany other ronvilaient Unit) of the angles

8 and 0 Shawn in the figure below.

*

FigUre 1-3

The position of"an artificial.satellite at a certainm)ment could be #

specified by giving.its vortica;:distance from-the earthle suriace (or center)

and the latitude ind longitude of the'point of the e-orthts turface direct4.
4Pn

H the satellite.

:Figure 1-4

The resuleis called a sphe11.ca1 coordinate system for space.
Q.

3
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A coordinap system coUid be set iip'even!Tor a "41fIce% whic;his quite

imAegulpr. We may bote that your how address

Ch we locate a particuamr point, your home,

nnes bf the town you live in. 'Theee stre4ts

e straight, are the "coordina e

liern indicate, in sone- re .nable

is a set of coordinates with

relative to the streets and- ,

aiad avenuei,' Which need not

ines , and the-numbers of the houses on
, .

the-positions 'along these.11
'

Once a cobypinate gra em has been established, interesting se

points can be represented by suitable conditions on their cgerdindkes. 7he

equatron

2x - y

..
represents,-91e line thrvugA the points (-1,2) and (244 Where we are"

,

using .i.Ttamgular coordiAktes. The ineqtality
f.

t /J.
x + kY - 21 < 9

e

.

represents the set of points not as far as 3 units distant from. (0,2) , in

other, words, the interiorxof the circle with radius 3 and center .(0,2) .

The.equati!on

2x y2 u

fepresentstthe.two lines through the origin making angles of 45 o
and f35O

,

with the x-axisi
.

.
Py means of coordinate systems we cat, if You

.

likeiarithmetiie'geometYy.----3----
. . .

,oblems about geometric figures are replaced4/4. problems about nilhbers,
$ .

.

functibnt, equation. s, inequalities) and so forth. Thus one-can bring to bear
,

the extensive body of knowledge about algebra, trigonometry, and the calculus
, .

which has been developed largely since the.13th century. (In this textvre
. .

,

shalliuse no calculis, -tut if later you study,the subject, you will see that

it would a been, in some places, rather Useful pp us:)
o

The def nition of analytic geolnetr); given above is of the sort found in

dVtional!ies rather than tihe sort usedrin mathematics. It tells us Rot how a'
e

technical term will be used in the remainder of this gooNbut he& a non- .

t technical phrase isOcommonly used. .As thb discussion above indicates, both
I '

te 4 4

the tlubject matter and th9 methods of tlAs book are already fairly familiar,
,

.

to you. You have evep put them together in earlier coursA. For example,
1

. you cinow that the graph (in a plane)-of an equation of the form

A

ax + joy +(1) e

A

1.6 a straight aline, anV that the problem of f ding the intersection of two

lines in a plane cam be solvft, by finding the ,sciution;of a system of two

V

ef 1, 1

lb
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equatiovs like '(

plane whidh
.4

On-that lintl,Lthila

A ).

i',

Yoiplso.know thal the 19aMsAf all, the,poipta in a

,froin a fixed liie as they are from a. fixe4 point*nor\

,41 '81.;Pd a Parabola).baa an eqltition-oS the .form
f :I ,* ... d

y.`"` = li.cx

'if you chooti."the

1-g

projie soOrdinitbilystem.. In:this book we lanai teie up

many ouch prOAlls, tip3 'pythe time you reach7the end of.it you'vrill. have

. some idea of ths.pow%of:phOnew methiod.whlich Destartes-and hie- contempo-

raries introduced into(geotetry.

* 1-2. Stmly Analytic Geometry?

A chief real:on fOr studying analytic geometry is the power of itp_meihods.

Certain prOhlems can be solved more readily, more directly, and mOre simply by
,

ti!uch methods. is is.true nbt only for the prObleTs.of geometry,and other;

branches of amthematics;ba also ;or a wide variety of applicatiOnsfin .

statistics phypics, engine41.ing, and other scientific and technicallieldS.

. Using algebraic methddl to solve geometric proble6 vorvits.eqsy'geperali-

zatiOn. A result obtained in one or tNo dimensions can-often be extendes4,at

once to thrte.or more dimensiona. It is often jUst'as easy to prove a relation

in space of n dimensions as it would be in space of two Or three dimensions..

In feet, much of the work i highqr dimensions is essent'ially algebra uril

geometric.terminology.

f
Analytiospometry ties togetiter and *refill in:a new and interesting,

context what you have been learning about number systems, alge geometry,"

'IL and trigonometry. It should lead to mastery in handling math ids you

Have studded previously. As you study this course,you will have Many oppor-
.

and methods st-,constitute your present mathematicE4

r 4

learn new m hodsv- Sometimes the new methods will
f ,

at first wAen compared with methods you'have bedn,

tunities to use knowledge

equipment. You will also

seem awkward or difficult

'using.' You should'keep in mind that wligt yau anedoing.is learning about the

methods and how to-apply them.

As a.student, you may at times be dj.rected to use a certain method to

gain facility with its. Real-vroblems, whether.in Mathematics, science, or
1

Industry, do not come equipped With a mathem aticalsettingand a prescribed

method) By the end of ttlis course-you shou/d have a greatex; variety of

ones. /du should bemathematical weapons in your arsenal, and moile ;

.0

more able'then to seldct effective Mathematical - to,attack prol21ems.

Thus another important reaaon for atudying analytic geometry is the value it'

_
A
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.

have for yod In ftrturi. coul-sos :.-not just cdurses in mathematics but' in
- . .

? ...'
,

..% , .
B.' statietics NrgirieerinG .aad scienc4 in general. .

,'

e 'Mere is it current.tread to'combi ..nne .a.lytic geomet y'and calculus...When
. .0. . . 111fr .'., . %

this'pecuraimuchthat-As:of vlae:in the putject ofgamOtiq leomyt7 is lost.'4
.. . . .

Because auch(a coltrimr is primarili &Ionia's, .only such parts.of analytic ge-
.- , -

...cmetry.a..a.A.ima..diately.;usiful.in the calculue.are,ke*. pr.studying,a

'841rite abUrse in analytic ge;metry, Ypu haye a ietisr OppcartU4ity go undA.-
,

.. ,. .

'.

stand the coherenee of'tne sUbject; the divdrsitk of itspe.thods and the.
..-

. iikevtiriety.of.i-:ObiSs to viii applied. 1;

.

,

-1
,

, . ,.
. 4 ---474%'" -

. - ... t

'Ono of the goatOiportant reasons.for stvdylng analytic geoTetry is-to
.. - I

a ..geln yndTiandlni:of ;the interplay, of ilgebra.and geometry.' Algebra contri-
.

bu iis to anhlyti,c geometry b'y providing a itay of writing relkariships, a
0.

, .

thod not only of.proving.known ie ultp-but :alskot_deriving pteviously un.

.known re Geobetri contribu a to algebra bYprovtding-a way of visu-
.

aliziag aliebraic re4tions. _Th s visualizatioh or picture, helps you to

understand. the algebratc discuss on. In the framework providedoky a coordinate

system, you w11 do geometry by,doing-slgebra, and pee algebra by looking at

geoamtry. Algebra and/ge6metr; ere intermeshed in analytic gemetry; each
# - -

strengthens and illuminates the otner.
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. Chapter

".COOREGSATES AND THE LI*E.

. .

4,2-14 Linear CoordinateAystema.
. -1,- $ .

- .." .

. .

. _In' our pre;fous study ofilatheOatica Ne have air AncouAtered at-.

least three-major wathemafieal struct4iea, aritOmeti:C$ the algebra of glit
. J 4 S g

I

nuMb4ip, and Eutlidean.geometry. ,,The.great7Germita mathematitianoDavid

Hilbert (1.662-1943)4 showed tha,allegeometric problems. cduld bp redgced to f

problebain aliebra. Quf goai..here need noi.t.4 'so drastiCie are not

trYiagrto-elimlnate.the need.fbr eeiloMetry4'bUt rether.to es.Wilfah con-

4.

nections between algebra'and geometry.' This will enable up to'bring4,o'bear

Pon a single problem botl th,e'pow'er ofalgebraic technipes and the struttufo:
,

clarity of gtmetry..
4 4i ,

s

It turns dut that We aee able to enect these connections between
.

. .

.. fillgebra and geometry:by_eatabli imicertain one-to-One correepondences

between real nutherse and poih Ilii.e'qnd between,real nuMbertrand angles.
sihoe ,

-
1 If-7W,1

mil- study of geometry we adopteeen'i rtant postdrate: /

The Ruler Postulate. The points of a line can,beplaced in ciarre-
.4

spondence wi'th the real nuMbers An such ajosy:that

(1) TO every point of the line there corresponds exactly one
. .

real nutber,

(2) To every real number there corresponds exactly one,point.

oi the lined and
4

,(3) The distance between two points is the absolute value of

the difference of the corresponding numbers.

f 4

We defined such a correspondence to be.a coordinate system for the line. We
r_

calleg the nuMber coetesponding.to'a given Point'the000rdinate or the point.

11
'In Order to ass n a coordinate,system to a 'given line we adopted

another postulate:

ti
( 14



4

'The "liuler Placement Pos1ulate. Giv4,t74.0 points P and Q.

.
of a line, the coo iñiystei canje ?,hosen in suchtä

.
.

-way that the coOrdinate of P it; zero and the coordinate-

. '
f

of Q is positive. ..,.-I
.

. .

We found these postulates to be extremely usetul whet we defined such concePts
...f

as congruence for segments, and order or.betweenness for collinear points.

We shall:mwmt to review and extend thetsé ideas in thp.text, for it is
. %

through coordinate systems that we are able to relate the algebra of"nuMber

to geometry of setg of points. We'Shall. first extend our notion of a,

coordinate system. '

a
In our theoretical development of geometry we had no need to mention

PI

0 units; the measure of distance between each pair of points was'aiways a fixed,

though unspecific*, number. We did not need to know utat these numbers were,

but.oilly how the measure of distance between one pair of points compared with

the measure of diVance betWeen41 second pair ,of poi!its. Was the first number..

as large as tile sckond? Was it larger? 'Was.it twice ag large? In applying

our theoretical kfiowledge to steCific problems we pund that.we.could use any

units we pleased if wv were consistent,in our usage throughout each given

problem. If we did a problem in inclies rather than in feet, the numbers we.
. -

obtained were twelve times as great, bui equal distances were-s411 measuted

by equal numbers. A greater distance had a greater measures-and a'shorter

.distancerhad a smaller measure, but the ratio of these distances was the

same for both choices of milt. Although the measures of distance between

pairs of points depended upon the choice of units, i6thtn a given problem the

measures in one unit were always proportional to the corresponding measures

In another unit.

What we discovered in effect was that relative to a-gives point on a

line there are not just two coordinate systems for the line,,one oriented in

each direction. For each point and each sense of direction on the.line there'

is a 000rdinate system for the line corresponding to each choiee of unit for

measuring distance.. Tneach of these coordinate systems thelarientation

corresponds to one sense of direction for therline and the coordinate of thik.

given point is zero. Since there are infinitely many choices of unit, thAw

are infinitely many coordinate systems for each point and sense of direction

on the line.

15
8



A

f , In this text we are not attempting to.develop a rigorous deduetive

system as we did in geometry.. Rather We want to .deelop and eiten0 the -.

concepts and, techniques which we cAnuse.to solve problems. Our bpsic'
,

technique will be to introdUc4 coordinate systetio. It is so important to

utiliit the Ireedom to choose cdtrdipate systems On a line that we stfte the
.

.

.foll.7ing guiding llrinciple:

MAAR aoh,VVKATE SYSTEM PRINCIPLit There exist coordina e

systems-for any line; sullIkhat:

(.2) If P .and Q are anY two .distinct points onee.line

emA p and' q tire 'any'two distinct rea.1 nuMbers,

there is a cgordinate system in Which the

of. P is p 'and the_coordiA6te of Q is

(2) 'If P,'Q, R, and S are collinear points

' coordinates pi q, r, and s reepectively

coordinate system and 'al, and s'

coordinate

q.
with

inone

resp@atively
I I

in a second coordinate system, if P' and Q. are

distinct, and if R and S are distinct,.then

ip' - 0.1

IP' 1r

DEFiti,i.TION, If a coordinate syatem on a line assigns the

coordinates r and s to the points R and 6 0 then

Ir - sl is the measure of distance between R and S

relative to the,coordinate system.

IT
ngThis nicety of e esaion is necessary when we are tryi to explain and

distinguish concepts ich are oft& confused. As our understanding increases,

we may speak more colloquially, and use whatever.level of precision is

aPpFopriate to the topic and setoting. Wh.ut is important is that a lack of

precision ghould reflect our cftice and not our tgnorance.
. . s-For convenience,'and if tliere is no danger of ambiguity, we shall_ call

this the distance between R and 6 .
. ,

We denote the distance between R and S jIlky d(RIS
,



Wherever the context makes clear that only a single coordinate system

is beii!F consiclerel we shalri adopt the convention that a is,the

coordinate point of b is tile coordinate of point t c iS the

coordinate of point We shall call the point with coordinate Zero

the..2,Eigin of the coordinate system. The point with,coordinate one j.s called

the:unit-point.

-.9

It is sometimes convenien6 to thinis-of the directed distanee from R

to 13 , Whiph we daine io'be nuMher. s - r .We shall need this

in the next section. 4 % . e

.
ty

.
.

Weshall cls6 fta it negessaxy to Use Vie notion of a dfrected sLgment,
k :

. -

Whiqh we define to be the set whose'elements 'are the segment and the ordered

pair of its endpoints,,or (RSA,S)) . "We shall.denote shah a diredted
0. .

. ,

segment by g . The directed pegment fig is.sall to-eilanate"frOlii ,R and,
.....

terminate in S . kowever,,we should note thatrdirected distance is related

to the choice of Aordirtate system and a dfrected segment is related to the

choice of order'for its endpoint.S. .The length.or magnitude of the directed

segment gE is the length of' RS.0 or d(R,S) . The ordering of the pair

of kdpoints (R,B) is related to'our intuitive notion of Sense of

)direction, from R to S . We shall find that this alliance of the concepts

of magnitude and sense of direction in directed segments is basic to our

development of a powerful tool of analysis in Chapter 3.,

#4.

We conclude with two examples illustrating some of the ideas introduced

dove.

17
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'.I - 1'. 2-
. .

.

',

,
...,

Ekample 2. Let us peiform a Oractica1..experiment.. sake.a.ruler which

4; marked An inchei-and another whtli is marked in centigiters; use eaal of

theie 101ers t45.motasure ',distances between tee. pairs of:labeled points4

F4gure 2-1. RedOrd your'resulWand'compare thlm..
,...0

. .

. lr' .

foin..-,r

1": ".....Ns.

Figure 2-1

Discussion. If a ruler is old or dartleiged at an enS, we prefer not to

s

measure from th end. When we made the measurements required abovep we

happened to piace the untt point of the coordinate system on the inch ruler

at 'A and found thatin this case the coordindWpf B and. C wde
0

. 7 5
3 B. and 5 t- respectively. When we placed the uri/t point at. B y we found

4
the coordinate of C to be 6 2 Since the measure of distance is

absolute value of the difference between the coordinates, we conoluded 4hat

in inches d(A1B) d(A,C) = 4 3 0 and d(B,C) = 5 We miide
0

measurements using a'ruler marked in centimeter units..4

141
k
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k

We stsumariietrov ineasurementelp the following table.
4 ill -

.
. ,

DistineF it ' ; Measure .

, /

Measure in
..

.in inches i centireterd

2 7

How do't&se resultie,compare withsyours?
,

We compared the measures to 'each Other, first in incIles an then.in

.centimetdors:. "s$ ;

7.3
e

14.3

2 7
d(A,B)'=

.62m
d(A,,C) 475

dcAtBI)

d(B,C)

8

7
2 ig

al .5/

5 28

.82

Abe

4

d A B
d BIC 1 .3

d(1,9 ,1147 z .82 .

1443

,
, .

,

*The acc(Uracy of our results cannot-exceed that of our measuAments. Within

7'C'these11mitatiolis we found that the ratios of *correspondi!ng measures of!.

distance were inciependent'Of the,units.
ip

Then we compared ihe measurements in centineters to those in inches for

Whe same pairs of points and for the perimeter of' 6ABC

41

d(Ap )

d(A,C)

7.3
2.54

2.53

a

7 z
2 .8

11.7

4 ,g
'

c.

19
12
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.., .e..
V .. 0

.
'4
.

d(B,C) :

C) .3,Yerimeter. of AABC 40

3 E

e

2-1

.a

Within the iimits of ac7curacy which we &ntld expects ve found thatjthe

cOrreaponding measurementfan centimeters and in,inches were propmtional. "

.

EXa9ple 2. rstrdfgHtlroad led> miles i'ond connects town A: to tovd

* A driver leaves town A for B ai the smFe.instant as another driver

leaves town B for A Ihe drivers traVel at the uniform rates of speed,

44 ft. per sec. and BB ft. per sec. respectively* ,How'soon will thcy meet?-

Discussion.' In Alving this problem we must mmke s6me, decisions abódt

unittS. Bome.informatiod is given in terms Pf ndles and somebin terms of.feet.

Also we are not told in What:units to expreas.Vie answer. Suppose we tri tin
,different approaohef. 'We shall first adopt'feet and:seconds as the units for

disiance and time.

(1) We Must e4ress 180 miles in feet. The constant of proportion--

ality is 5,280 It, per mile.

Thus

338 (mi.) x 950,400 (rt.) .

The inolusioA of the name of ihe/unit next to,the number,of units is'

a common practicein the playsfbal sciences and engineering. it

provides an immediate reminder'df the significanof the calcu-
.

lations. 'Lich a pracfice is called a mnemonic (fram ttie treek

Avacreat meaning to remember).

We let t rePresent the number of seconds which-will elapse
.

before the two-drivers meet. -We interpret the pralem is:1th the

following statement.of equality:

latt 88t = 95004.00 p

which is equivalent to

132t = 950/400

and t= 7/200 .

The drivers will meet in 7/200 seconds.

.6
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This result is such a large nuMber 'that it may 'npt aipeal readily CO:)ur

sense of dUratión of time. We-night eonvert this meadure to

units.in the hope that.the answpr, mill be more.intuitivelly meaning-

intuitive

different

fui. If

which is

'St
we cOnvertto minutes by diyiding iy 60 we Obtain. 120.minutebs

clearer. If we convert to iours by 41.yiding by 60 again's 1,;e

olltain 2 houral4which is probably the t satisfactory expressipn of the

answer.

If e are able to dntkcipate the relative size of the ansWer, we mak be

able to,choope units which will obviate the need td mike cliaa71ea 'at the end.
-

In this Problep we might well have realized that hours were an apfiropriate

unit for..ame. . We mighii aleO.1fave simplified tharithinetic had-we used..

milep as the unft of distance. Our sOlutiortwodld then have been:

T (2). We convert the rates of speed to miles Ter houe. The constants of

1
prOportifonay are mile per focit, 60 seconds, per minute, .

and 60 miilutes per hour. -Thus we Obtain

44 x 1 (El') x
60 (sec.1 60 n,

= 30
sec. 5280 ft. 1 'min.' 1 hr.

and

. 88
sec.) no
min.' 1

We let t represent the nuMber of hours which will. *gpse

before the two driVers meet. We interpret the'problem with the

sta;tement of equality,

30t + 6ot = 180

This is.equivalent to

Or

90t = 180

t= 2 .

The drivers will meet in. 2 hours.

The first exa1e illustrates the assertions which led to the formulation

of the Dinear Coor inate Systet Pi4nctple. It also suggests that when we

change the eoordinate System, we do not lose the notion of congruence for
.

'segments, which is defined in the SMSG Geometry on the basis of equal lengths.

In the next sedtion we shall set that the concept of order or betweenness is

also preserved in linear-coordinate systems.



The second example. Points up the

throughout the'solution of.a problem.

inherent in the freedost,O.choose_the

2-1

necessity for using,units consistently
,

It Also illustrateS the advantages
.

1
,

scale or units-Of a coordinate system.

'EXertifiles 2-1
a

4 -

1. Take a sheet of ordinary lined paper and use a lateral edge to 'lake a

' "ruler" by assigAing coordinates to the ends oPthe lines. ,USe this

.1

ruler to "measure" Figure 2-1. . !plowing the outline of the discussfptç

:in ENvaple 10 compare,y04r,measurements to each other ind to the measure-
. --

merits in JNample 1. Find, 'the cotstants of proportionality yhich relate

the units of your ruler to inchekand centimeters.
1

.

2. .tn EX:amble 1 it was asserted that our results agreed within the

limitations of acCuracy Which might be.expected. Showythat the accaracy

of our results is consistent with the accuracy.of OUP measurements.

We obtained 2.53. rather than ,.2.51 as.the constant 'of.

proportionality relat.ing one measurement in centimeters to the corrl+

sponding measurement in inches. Justify that this discrep.ancy is not

significant.

3. Assume that tlie earth is a sphere ofradius 3963 miles: A man of

extraordinary powers is able to ,walk completely around the earth at the

equator. During this triP hls head is.saways 6 feet farther from the

center of the earth than his feet are. Thus the path of the man's head

is longer than,the path of his feet. Determine'how much longer.

Let A = 3014-16 Try to a9ticipate the appropriate units for the

ailswer.

4. What'is the scale of the map on /hieh the "distance" frem York to
1Sam Francisco is shown by a line 7 inches long?
2

5. (See Exercises and 4.) A model, of the earth, dr globe, has a 24

inch diameter. What is the scale of this model? Howl.ong on the

sur,face of this model wouldbe the "line" from New York to San Franc4sco?

6. A liicyclisestarts along.the road at.the rate of 8 miles per lour.

'Two hours later his friend starts after him on a scooter at the rate of

32 kilometers per hour..

(a) Vpw far apart are the'frieilds one hour later?

(b) 'How long and how far have theY traveled Yhen they Meet?

9215



4
Two bicyclistS startit the same'tibt from points 30. 'miles. apartiand

ride directly toward bath othe'r until they meet. The first;ridj'seat.
, . . . .

miles per houro the second at 5 miles pet Iwur. At the inatant they

e
start a preposterouS bee starts from the?fitpt,biOYcle toward the ieCond

. 4 #

flying at an urivarying 1-ate of 10 miles per hour. As soon as he meets . .

,

the second bicycle,'the inee turns back dad flies to the firV,,, then baek
N) w #

tglithe tiècond, .1.. .. lia continues to do so until the two riders meet.

# q '

(a) How long in te and distance was the.first leg of the bees flight?,

(b) What was -;he tOtal length of the beets flight in time rd distaiice? '.

, .

2-2.. Analytic Represeniations of Points arid Subsets of a Line.
I.

In this section we confine our attentiOn to a line on Which a coordinate

system has been chosen. We shall let 10 stand fOr the coordinezte of thee

point A "b7 for that of B, and( so forth.

We shall show that the description of betweenness of points is preserved-

in any linear coordinate system. We shall also show that conditions on points

and Subsets of a line may be, represented by means of relations involving A

coordinates. '

In the SMSG Geometry we defined the Concept of orlter for thrre distinct*

co lineiir points. The point B 'is between the points' A and C: if and

if d,(A1B) d(B,C) = d(A,C) . We proved that uthen B is between A

C #ither a < b < c or 'a'> b > c ; that is, thd coordinate of 13

etween the coordinates of. and C We also realized that the

onverse of this theorem is true. LaStly, We used coordinates to deduce that

of three distinct collinear points one and only one is between the other two.

If we change to a coordinate system with a different unit, the measures

of distance will change, but the Linear Coordinate System Principle assures

us that the'corresponding new distances will4De proportional to the old. If ij

a, b, and c are the original coordinates of three distinct collinear.points

and at, bt, and are new coordinates, then



4

4
.

If we let the posAive real numb

may write
35

. , .

'.

(1.) la' - WI I= kla.- bl
;
, Ib!.- cl+. klbc-cl., :t4 10 --el = kta -.ol..

. 1

In the original coordifistelystem ve denote the:meas4rOa of distane between
1,' .

points.by, d(A1B) 0 d(B,C) , and .d(AA) ; in the now c ordinat s stem we

denoie the measures by :0(A1B) , dt(B,C), and .0(.440)'.1- By dgfi tion,
I.

( 2) .8d(14.213) = Ia - bl, 1 d0320 = lb - cl., d(A,C) ,:i la - cf
and es

4 ....

(3) 0(A42) = la bli dt(B,C)'. lb' 01 0 O(AIC) it' la'

2-2

k represent the eqU4 ratios above, ye

Bow if B is between A and C p.then by definition,

d(A1B) + d(B,C) = d(A,C),

If 'we substitute the equal quantities from (2), we obtain'

la - bl + lb - el = la - et , .

Which, since k / 0 , is equivalent to

kla - bl + klb - el . kla cis

If.:we substitute the eqa4 quantities from (1) and(3),.we obtain first.

and then

lal - 1)11 + lb' - el cll

d'(A,B) + dt(B,C) = d'(A,C)

'Thus, the condition describing the order o4",points on a line is independent
A

of the choice 05 coordinate system for the line.

Once we have estatlished a criterion for describfhg the order of points

on a line, e are able to define such basic geometric entities as segments and

rays. Wexecall that the segment PQ is the set Which contains P, Qs and

all points between P and Q 1 while the ray II is the unio6 of PQ and

the set of all points R Such that Q is between P and' R

W described the points between P.,and Q as interior points of the

t 4110q. . Sincetan inte'rior p6int of a segment divides'the segment into

two!other segments, we sometimes call it ail internal point of divtsion. We

".1.4entify a point of division of a segment bY stating the ratio of the lengths

of the new 'Segments.

1.1
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.."1*

its
DEF1N1TiON." 1930111tf X is sal& te.5livicli the'

r.711i 4.
0!a

yegraet PQP01.2 al ratio :-kifeind only

c

d xtg 71'

.

T4°
's If weSIet p, q, and x represent the-coordinates df.P, Q,

r,-. . 4
..i , .

c
a

AT' . -

nate.syiteM for the,linei.we ma* wxite .

A
,t P

x l '_ i i .. .
I.

Jx. -Ai . :
rs

. . i . e r
O.

Sine; X is between P anci QJ'we know that either. p".<4.1.q -or

p > x > ue Thus we may24move the absolute value signs,Ao write either ..

7. . 1
it

or
q - x d- x -.,q d '

. ,
.

. -

.
p.

and X in

.

which implies
.1... 1

)dx - dp cqqP-!

. 1 -. '1

These are both equivaleni to

r

ex or dp
41-1c

ex + dx t.p 4'cq

di+ eq
x

d
4

(5) x c d c d
q

Since c and d are either both Toqpitive or toth negative, x ,is always

cx cq

V.

define& in terms of p, q, c and d .

.*7
Equation (4) suggests the description of the coordinate of the point ci?-

division as a "weighted average" of the coordinates of the endpoints of the

segment. The phrase "weighted average" is sweested by the placement of a

,fulerum. When two different weights at the ends of a lever are in balance,

the fulcrum is closer to the heavier weight than.tp the lighter weight. In

determining a point of division the heavier "weight" is assigned to the

/coordinate of the closer point and the lighter "weight" to tte cbordina:te of
,

the more remote

EXample 1. EXpress the coordinate of.the midpoint of segment PQ
*,

terms pf p and q p the coordinates of the endpoints.

A
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)

, .

. e v------
SolutibA. Ey definition the midpoift X of a te)pnent is an interior'.

,1,-

point equidistant 4'rom the endpoin se. Thits it is a pOint ofidivision WhIch
. .

()fides the segment inkhe ratio one 'to one. 'In this case c and d ma:

_

both be one, and.we.may write . .J

or

.0444L.,

In Equa

a '1 1

above the coePficientS of p and q ,addoup to one.
d C

4If we let
c + d 7

a and ...-71, . 7 b we may write
,

1017

x = ap + bq where a > 0 ; b > 0 , and a + b = 1 .

It is interesting to see what happens here if we omit the requirement
that both a and b be positive. Our equation is now

(6) e x = ap + bq , Where .a'+ b:= 1 .

t IIf b is zero, a .is one and Equation (6) gives the coordinate of P If
a is zero, b is one and Equattl'on (6) gtves the coordinate of. Q

R- P S Q T U V

Figure 2-2

In Figure 2-2 we have indicated several points on line tz, as well as their
.coordihates. For convenienee let us assume that r<p<s<q<t<u<v.

1We have alreadY seen that if S is the midpoint of PQ s = p +;,-5 q
2

that is in Equation (6) a = b . Also, p and q are de.termined by the

conditions a = 1 , b = 0 and a = 0 b = 1 respectively. Let us suppose
that d(F,Q) = d(R,P) = d(Q,T) = d(T,V) and that U is the midpoint of TV .

We may determine the coordinates r t, u, and v in terms of p aid q

1

19
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The assupption for order of the coordinates permits us to remove tie absolute
r .

value-signs and Wri.te:

"lob-imply

7%
q r "2- t

and =--2 =-2v p 3

r = 2p q o't = -p +.2q and' v = -2p + 3q respectively.

Since :U is the!midpoint of Tit,
r ,

1.
1 1

u = -t +
. 2 2

-p 4- 20 + (-2p + 3q)

_
2P %it

e.

Ha d. we cilosen toorient the coordinate system in theApposite dirltion, we

would have obtained the sameresults.
f

,

In every case above the sum of the coefficients of p and q is one..

This Suggests that any: Point'on the line may be represented by adopting
'J

appropriatecoefficients in 'Equation (6). This is true, although ve do not

prove I here. When a variable is expressed by a form similar to.the right

side ocquation (6r, We say that it is exptessed as A linear cotbination

of g and q We shall have occesion,to develop this idea in the next

chapter.. We may describe our conSecture here by saying that the cOordinate.

of ar& point on a line may be expressed as a linear combination of the
.

ceOrdinates'of two given distinct poNs on the line.
...

..
,

In view of the iestriction on Equation (6)0 we really need only one

variable to represent the coefficients. 'If we let t-= a then b . 1 - t

and we.may write .0

CO x = tli (1 - t)q where t is any real nuMberl .

Thus the variable Int is.related to thdconstants p and q by a aecond

variabl9 t It is cleAr What x. repiesents; it is the:coordinate f a

1point on the line. We know that t represent's a real number and we an see
. *
that each Value of t determines a unique value of* ?t pbut it is not;

immediately clear What t names or measures. Our primary interealLis in thd7,

variable x ; our interest in t is definitely subordinate.,14When we express

one or more variables in t'erms of yet another variable, we frequently say tat

we have a parametric representation. The.other variable is called a.paraMeter.
-

'we ahall want to develpp this idea in Chapter 5.
%

F.



In.the present.case we.see that When t 0 = q when t = 1

,2-2

1 1 1x = p ,;-and when t = p x = -This suggests 'the explanation of the

.

role of t . The Linea Coordinaip SysteM-Principle assures us that there
4-0

exists another coordinate system on the line PQ in which the coordinate of

Q is zero and the coordinate of P is one. A point whose coordinate is

represented by .t in the latter coordinate system is represented by x in
the former coordinate system. The coordinates in the two coordinate systems,

are related by Equation (7)0

N16.- 4
We have developed several different ways of describing a point on a line

by means of equations involving coordinates. We call such descriptions

analytic representations. We now turn to analytic representations of subsets
of the line. r

In earlier courses you htve dtUdied a number of subsets of a line.

Among them are the following:

AB 0 the line through A and B ;
-4P
AB p the,ray whoseendpoint is .A and which contains B

4

the segment with endpoints A and B

It is possible to represent these and many other.subsets of a line

analytically. We corisider Fonutber of examples beloii, and ask you to study

others in the exercises. In what follows, when we sa y. that b is between
a 'and c (a b, and c. real numbers), we mean that either ci < b. <,,c

or c < b < a .. Then B is bqween A and C if and only if b is

between a and c

copsiats .Of -all points 7 X with any real oordinate x

tanSay thieW-the.fprT

4.-40

AB = '(X: x is real )

or in the forta

AB =_(X: x2 > 0)'.

FUrther

(x: a < < b or b < x < a)
. .

(X: b a and x .> a or b < a and x < a

9 ID
2.1".

II I
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There arc two related problems which crop uifrequently in anAlitic

gaometrY, one of which is illustrated above. , A set .S .of points may be

specified by geometrie conditions, and we may ask for an analytic condition

satisfied,by the coordinates of points of S but not by those of any other
v,

gaidlitge. Op the other handl wiiSmy be given r -analytic condition and want to

know what points have coordinates satisfYing it. You have met both these

problems before. The analytic condition was usually an equation, but you

have also considered inequalities, and some of the conditions considered below

imvolve other,relations. When 4 set of points consists of those points

hose coordinates satisfy a certain condition; we call the set the graPh

(or locus) Of the condition; we'call the condition.a condition,for (or of) the

set. These ideas prove more interesting and more important in a plane and in

space, but we shall discuss some examples on a line and ask you to work on

others.

Examkle 1. The graph of 1x1 = 5 j which is also the graph of x
2

is the set of points with coordinates ± 5 .

16
t t I I k I L t 1 ..01_ 1 4 1 .1

A -7 -6 -5 74 -3 -2 0 1 .2 3 4 5 6 7

This illustrates the fact that there may be different conditions for the same

set of points. (Of course this raises the question of whether the conditions

are really different, but'at least they were expressed diffkrently.)

Example.2. To.find the gr6h of 13x - 61 < 9 we observe that

13x - 61 < 9 is equivalent to 3Ix 21. , or ix - 21 < 3 . The graph'

is Shown.below.

41.

The use of the absolute value in
If

,measuring distance s an aid in finding the

graph, Thus, the graph of the solution set of Ix - 21 < 3 may b'e idter-

preted az "the set of all ;tints of the line whose distance from the point

with coordinate 2 it less than or equal to 3 ."* .

22
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Exampi 2.. Find an aftalytic condition for the set bf points..shown belOw.

-(The heayy dot is a device .for indicating that the right endpoint is tn the
'set.) An analytic condition for this set is

Exapple

'respectively.

-5 < x < 4 .

/1Let the coordinates of points. 0 , A ,.X , be 0 , , x ,.,
Find all poiits X suc\that. 2d(0,X) + 3d(X,A) = d(0,A)

5,i1i,:n..'6For any X , '3(0,X) f > 13(0,A) . Then, unless
d (0,X) d(X,A) = 0 , we have

2d(0,X) + 3d(X1A) > d(00A) .

Thus there is no solution unless 0 . X . A .

Exercises 2-2

1. Repreaent graphically:,

(a) r
2

= (k)

(b) (x - 3)2 4 (i)

(c) 3! = 2 (m)

(d) x 3 < 7 (a)

(e) 5 < 2 - x (o) 2 sin MT

(f), t + 31 < 3 (p)

(g) x(x > (q)

(a) (x 1)(x + 2) < 0

(i) x
2
+ 4 < - 4x (r)

.(,=) 12y - 41 . 6

Ix - r.1.23; < .456

12s + 21 < 4

I3x + 21 = r

sin xn

cos .0 > 0

; x - aj < 5 , where a -= 2.35

and 5 = 0.144

Ix 7 a < t , where a = 0.4+

and 5 = 2.35

,23 30



2. Repreaent analytically:

(b)

(c)

(a)

(e/

r)

4.""
(g)

"4164171.4.L"

k I

x,

I I I

( j )

111

1 1 I I i a
I lip

I 0

(For Parts (i) and (j) BSSUMO the

same-pattórn throughout the line.)

"16.41.16.411.11141"6"

-0414-44-414-1o

3. Points, 0,1.1 Apand X have coordinates 0,1 ,apand x

respeCtively. Find all values of x that satisfy each of the fol wing

conditions:

(a) d(o,x) = 3d(o,A)

(b) d(0,X) + d(U,X) = d(0.,U)

4. if P and 't; Have the at:ordinates given, and if 14 0 A , and_ axe

the 'midpoint and the two trisection points of ft-- respectivelY, ind,

in each case, t:he coordinates m a and b

(a) p = 3 , q = 12

1

(b) p = 72 0 q = 13

(c) p=r+.s,q= r

(d) p = (r + - 2 ; q =

) p = 2r., q 3t

(f) p = 2r + 38 , q = 3r - 28

2 2
(g) p =r r,11=8 m 8

(h) p = r q s

31

4
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AMP

5.. In the equation of the line tir

6

x = apj+ bq. 1 where a 4-sb. = 1 1

x0p/and q are the coordinates of theloirits X1'44pland
.

respectively.,

Find the relative positions of X 1 and 'Q if

ti a = 0

(b) ='1.

(c) 0 < a < 1

4-W
6 In the equation of: the,line PQ

X.= ti+ (1 - t)q 1 where t is real,

.x p , and q are the coordinates of the Points X 1. P and Q

respectively. For what valUe(s) of t is

(a) d(P,X) 2d(4,30 (c) d(X,P) = 2A(P1Q)

(b) 2d(P,X) = d(Q,X.) (d) d(P,Q) d(Q,X)

Exercises 7-10 are based upon the following situation:

ig
Points A,B,C1D1and E are on the edge of an ordinary 12 inch

1 1 .ruler at positions corresponding to 1 1 ; 2
1

p.4 1 and 9

respectively". , These numbers are the inch-coordinates alb, hnd e

of Oe corresponding points.

(d) a<O

(e) a >1

() b >1 .

it

% d(A BFind the ratios ka)

8. Express

(b)
d(13 0

d(0,D
422.4, and (c)

(a) t6 qrs 4 linear combination of a and c

(b) c as'a linear combination of b and d

(c) d as a linear combination of c and e

9. Find the inch-coordinates of the trisection points of AC ; of BD ;
of CE .

10. Find the inch-coordinates of pints 17 1 Q and R such that

d(A,B )2 d(B,c) 2 d(0,D ) 2
d(BP ) 3 ' .d(C,Q).- 3 d(E,R

32
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l A

2-3.. Coordinates in a Plani$
\,\A

Yoi will recall that the plqpitl\of a,plane can be put into one-tV-one

Correspondence with the ordered 1).0ird, Of realauMbers in the following way.

Any two perpendicular linei; in the _itte are selected as reference lings or

axes. They are called the x-axis an iti1C41-axid.,The interseCtion of these
A \.

lines is called the prip14 and denote0y vip . on each axis we use ft

coordinate system with 0 4ss origin. Normaiy the ZWO coordinate systems

shoUld use the same units. It iippssibleto Ase different coordinate'

systems on the two axes,.but this introduces'Oomplications,,a few of which

mill be considerea in exercises, If P is ally pOint in the plane,,let a

.and.b be the coordinates of the prOjections o P :onto the x-axis and

y-axis respectiirely. Then to P we assign the ordfred pair (a0b) of real

nuMberserectaAgular coordinates). The first is cairlthe x-coordinate or

Ascissa of P the 'second the z-coordinate or ordinate of P Conv'ersely,

if (alb) is an ordered pair of real nuMbers, there is a u41que point P

wdth abscissa a and ordinate b, . It is the intersection`of the line

perpendicular to the x-axis at the point'on that axis with com4ihate

and the line perpendicular to the y-axis at the Point on that axis with

coordinate b

4.

. .

In sketches it is customary, though not necessary, to show the xl.axis

hdrizontal with its pos'itive hal? to the right, the y-axis vertical WWI its

positive half upward. In all sketches we place.an'x by theend of the lihe

representing.the positive half of the x-axis and a y by the end of the line

representing the positive half of the Y-axis. Thils is essential When we\do

not indicate the coordinates of any points on the axes.,

Figure 2-3

33
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lire customa4ily reserve the letter 0 to represent the origin, but do not

always include it on a sketch unless we refer to it.

Toufwill also recall that if Po ca, (xolyo)

distance between the two point,s is

and P
1

1

d(P0,P,1) x,2 + .yof
. .2

We turn now tO the problem of expressing the coordinates of any.point

P = (x,y) of the line L determined by the distinct points. Po =(x0,y0)

and P1 = (xi,Y1) in terms, of the coordinates,of .P0 and Pi . Let us

assume for the time being that, xo xi and yo yi

2-3

(x ,y1) , then the(.

Figure 2-4

41--10 4+
In Figure 2-4 P Q is perpendicular to the y-aiis, PQ and P R to the

It

x-axis. Then triangles pou and P
0
RP

1
are similar, and hence,

,

x xo y yo

x6 4V1- YO

Be sure that you see that the same equation holds ii the order of Pk
AJ

ana P is different.

If the point P is an internal poi-nt of division which divides the

segment P0P1 in the.ratio , then each meMber of Vquation (1) is equal

to
c d

and we may write

and
+ d

2734
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If We solve these equations. for x and y we obtain

2 )

dxo taxi
d y .3.r0=

c + d c + d

in 'which the coordinates Of the point of division are expressed as weighted

averages of tiw coordinates of the endpoints of the segment.

We are now in a position to follow exactly the same development as in

Section 2-2.

If P is the midpoint aT P0P1 A it divides the segment in the ratio one

to one. In this ease we pley let c = d = 1 and write

2c0 + xl
and- y -

.4 . 2 2

i .

. If in.Equations (2) we let a = -.g.:171 and b =
c + d we

mgy write
)

x axo + bxi and y = ay() + by1 where a > , b.> and fr a + b = 1 .
,

If wr omit the requirement,that a and b be positive we obtain

(3) x.= axo + bxi and y = ayo + byl p where agow b = 1 .

An analysis similaeto that of E4uation (6) in the previous 'section would
4*

suggest that each point P = (x,y) On P0P1 corresponds to a unique choice

of numbera for a and b in Equations (3) and coilversely each pair (a,b)

is.Equations (3) corresponds to a unique point on ti. Thus the.
0

x-coordinate of a point on a-line may be represented by a linear coMbinatidn

of the x-coordinates of two given distinct.points on the line, whille the

y-coordiilate is represented by the same linear cothination'of the

y-coordinates of the given points.

Lashly, we'recognize that, because of the restriction on the coefficients

in Equations (3), one,variable.will suffice. If we let = b p then

a =1 - t and we obtain

x = (l-t)xo + tx3. and y = (1- t)yo + tyl

or'

(4)

x = xo + t(X, - X0)

where t is real.

r = ro + t(y1 y6)

3 5
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This is a parametric representation of the point P = (x,y), on the line

toi; t Where Po = (x0,y0) and P1 . As. We shall,see in Chapter 5,

this representation is not only useful; for c*ertain problems it is essential.

:As we observed in the previous section, the parameter t represents the .

coordinate of P in the linear coordinatafsystem with origin Po and

unit-point Pl.

The cdordinate system for a plane Which we have described and used above

ia called a reotangular or Cartesian coOrdinate system. The name "Cartesian"

comes Irom Descartes, who is credited with being the first to introduce the

theory of algebra into the study of geometry.

.Exercises 2-3

1. If P and Q have the coordinates given, and if M A ; and B are

the midpoint and -elle two trisection points of PQ respectively, find

the cooranates of M,A0and B in each case:

(a) .13 = (0,0) , Q = (6,9)

(b) P (2t3) , Q = (8;12)

(c) P = (5,12) , Q = (6,-1)

(di P = (4,-3) , q ='(-9,10)

(e) P . (-6,-3), = (6,3)

(f) P = (-3,-6), Q = (-6,-3)

(g) P (131,p2), Q,=

(h) P = (2s,5t) Q = (s,-2t)

(i) P = (4r + 2s , -3r + s),, Q = (-r 2s)

4-4
2. Let P (x,y) be a point on line P0P1 , where Po . (x0,y0) and

. Express x as a linear combination of xo and xi

and y as the same linear coMbination of yo ana yl in the

following cases: .

(a) Po = (2,3) = (6,1)

(b). P0'- (74'5) ' P1 (2,-()

(c) Po = (-3,-6) = (-6,4)

29 3 6
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3. Let P =.(x,y) be'a point on line f-P'
,
where P

0
( ) "d

. 01 x0a0
Pi sm (xlai) . In the following cases express coordinates of P by

a parametric representation. Choose the parameter t so that

(x,y) = Po when t = 0 aa (x,y) . Pi when t = 1 .

(a) Po a (.2,3) 6,1)

(b) Po . (-4,5) , Pi . (2,-7)

(C) P0 . (-4,-6) , P1 . (-6,4)

4. In the development Of Equation (.1) in Section 2-3, we assumed that

xo A xi and yo A yt . If xo = xi or y y this equation does
0 1

not hold, but Equation,(2) in Section 2-3 does apply. "Consequently,

the rent of thP development is valid in either of these cases.

Justify that E4uation (2) applies when the conditions are relaxed.

[Hint: Show that the problem reduces to the situation discusSed in

, Section 2-2.]

5. 'AppZY the condition given by Equation (1) to decide whether the points

A,B,and C with the coordinates given, are collinekr. How can you

uie the formula for the distance between two-points to determine iriaether

three points are collinear? Use this Method tp check your answers.

Ca) A . (7,0) y C = (22,9)

(b) A = (71.1,4)YB = (3,-14) , C = (-5,-6)

6. For What vane of h is the point P-= (h0-3) on the line determined

by A = (1,-34 and B = (4,7) ?

2-4. Polar Coordinates.

A rectangular coordinate system is certainly the moist trequently'enployed

coordinate system, but it is not always the best choice for a given problem.

The rectangular coordinate system is based upon a grid composed of two

mutually perpendicularisystems of evenly spaced parallel lines in a plane.

An alternative is the'polar coordinate system, Which is based upona grid

composed of a System of concentric circles and a system of rays/eManating

from the common center of the circles.

3 7
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The paths from one point to another on a rectangular grid jtsually entail

mptiontalong two adjacent sides of a rectavgle, but the natural paths of

physical objects are usually more direct. A.foStball player doea:nOt pass

the ball to follow the deceptive path of-a receiver. yather he looks for the

receiver in a certain.area. If he finds the receiver uncovered, he will
.1

try to pass the ba'll just se far in the direction of the receiver. To apply

iris idea in the plane we require a frame of reference. The frame of.reference

consists of a fixed point 0 , called the pole, and a fixed ray at

called:the polar axis. The ray lias the non-negative part of a linear co-

ordinate system,with the origin at 0 . the position of a point P is

uniquely determined by r and e , its ?clam: coordinates (FigUre 2-5a).

.m

Figure 2-5b

The polar angle 9 is an angle generated by rotating a ray 'OR

about 0- fyom V in either-direction as far.as desired and terminating the,

rotation in a positi8n such that the line lor contains P . If we rotate ol

in a counterclockwise direction) Le has a positive measure; if Zift is ro-N
tated clockwise) thenLe Iwis a negative measure.

DEFINITION. If 6? contains P , then the polar distance

r = d(0,P) ; if P lies on the ray opposite to C-5.?

then r = -d(0,P) .

Commonly used units of measure for polar angles are degrees and.radians:

When the usual symbols for numerical measure of angles in degrees, minutes

and Aconds ate omitted, it is understood that radian measure is 'intendst.

The polar coordinates of a point are written.as an ordered pair (r,e) ,

Where r is the polar distance and 9 is a measure of the polar angle. If

/ the angle is measured in degrees, the symbolism alone indicates that the

ordered pair represents polar coordinates. If the me ure of the angle is

given in radians, the ordered pair of real numbers is in inguishable from

the notation usedin rectangular coordinates. If the context\does not make

clear that these are polar coordinates, we must say so explicitly. If no 0

indication is given, we shall assume that reetangular coordinates are intended.

31
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...41440

The pole is aespecial point. Wlien r =. 0 the pole is described. In

this case Le, may have ani measure, (0,0) (0,600) .(0,180°), and (01i

are all names for the pole. We tually write .(o;e) to indicate that e

ismay be any number.

not unique.

The pole is not th

1

only point whose representation

A rectangular coordinate system establishes a one-to-one correspondence

between points in a plane .and ordered pairs oS2laaladMbers. It is important

to obserVe that a piblar coordinate system does not. In polar coordinates each

ordered pair correspondsto a unique boint in'the plane, but each point is

represented by infinitely many ordered pairs of nuMbers.

For example, same other coordinates for the point P shown in

Figure 2-5b are (3,420 ) P (3,300°) and (-3,- . See Figure 2-6.

(a)

Figure 2-6

In subsequent figures we shall delete the arroWhead from all rays except th'i

polar axis.
9 k

The lack of a one-to-one correspondence between points and ordered pairs

of numbers necessitates cara-When we use polar coordinates, but the-advantages

are sometimes great indeed. For example, the figures Which we have used here

may remind.you of the figures Which illustrated the definitions of the

'trigonometric or circular functions. As you will decover in subsequent

chapters; the analytic representations of these functions and allied reljtions

are often simpler in polar coordinates.

39
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Elsmple 1. Plot the points

coordinates (2045°) 0 (3,-120°) I

SolutiOn.

and D y whiCh haveipolar

and respectivey.

Figure 2-7

Since LI:measure of LPOM = 45Q , A is the point on lq such that
.

d(0,A) = 2 . A measure of bpm = -120° aid B is the point on zzssuch

that d(0,B) 1. A measure of POM = and C is the point.on -ar such

that d(O,C):= 1 . lastlyva measure of POM = - , but since the polar

distance is nsegative, D is the point on the ray opposite to OS, suchthat

d(00D) = 2 , -

e 2. Find four pairs of 16olar coordinates, twd in degrees and two

ians, for-eaoh of the points A 1,33 and C in Figure 2;8.
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Figure 2-8

Solution. A simple reprefentation for A is (3140°)- * but ,we may also

There are éthers of course. )use 30-320°)-

B

4(34) 4,Aand

(.720800) (20:34

11,11E and
f_11 19g)

212'
1 12

S.

15'
c. (1,105 ) 0 (10465°)

41r

We mentioned'that any Pair of perpendicular lineb, in a plCne may be
.

chosen as the referenCe axes for a rectangular coordinate system. Any lay in

a plane may be chosen for the polar axis in introducing a polar coordinate

system. When we.are solving a problem using -coordinates, this freedom enables

us to choose a system which will fimplify the computation. Because we wish to

keep this in mihd* we state the folling principle:

41



COORDINATE PLANE PRINCIPLE. If-lir and te are two,perpen-

dicular lines intersecting at 0 (0 A and TO,i , there

exists a rectangular coordilyte system tn the plane of AB .

and n such that'

4,41 . 4-) ;
( i) ,' AB' is the x-axisl. CD is the y-axis'

and

(ii) In the co6rdinate systems on the,axes, the

I coordinatei.of A did C are positive.

In any.plane containing'the ray OM there exists a polar
.

coordinate system such that O- M is die polar axis.
a

In some situation& we must use both rectangular.and polar coordinate systems

in the same plane. ,Usually we let the polar axis 'coincide with the non-
.

negative half of the x-axis. Coordinates in both systems are assigned to each

point in ihe planeolout we !hall need qauations relating the c?prdinates in

order to cliange back and foTth.

y.

In Pigure 2-9, ye see that

and

(2)

Figure 2L.9

x = r cos e

y = r sin e

2 2 2
= -x y

tan e , Where x

35 42',
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In Equations (2)' we note that, as ve might have expected, r and 0 are not

unisquely-define. You should verify theserequations for points in other

quadrants.

t We may use Equations (i) to.transform from_polar coordinates to

,.,rectangular coordinates and Equations (2) to find polar coordinates for

points whose rectangular coordinates are known.

Example 3. Find the rectangular coordinates oft.he point designated,in

polar form by (8,-60°) .

Solution.

x 8 cos (-6008(-32.1) =4

Ebcample 4. Find a polar representation for the point with rectangular

form& P

' t
Solution. r

2
= (-2)

2
+ (-2)2 = 8 ; therefore, r = ± 2-fq . Also

-2 atime =7.--i= 1 ; hence, 9 = + ng n an integer . It is ne6essary to

match the values of r and Oirwhich

correctly locate Pv4 For example,

(216: y is not a correct solution,

as tgee coo'rdinates locate a point in

the first quadrant. But

(?:ri 4-) and (-2Z -1) are two

of-the possible correct designations

for P .

43
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Elamile, 2. Find the diatance between the pointa PI and P2 whose

polar coOrdinates are (i.
I' 1

) and (r
2,
9
2

) respectively.

6

Solution. We have an expression for the 4).stance between two points in

terms of their rectangular coordinates,

d(Pi,

We mar use this eXpression if ve transform the coordinates of,

to rectangular form. We use Equati9no (1) to obtain

) .licx, x1)2 Y2

xl = r1 cos 91 yl = r1 sin 91 ,

x? = r
2

cos e
2 P 12

and P2

We square both meMbers of Equation (3) and substitute these values to obtain

(d(Pi,P2) 2
.2 a

cos
2

- r
1

cos 9
1

) +-(r
2

sin e
2

- r
1

sin e
1

2

2
cos

2
e
2

- 2r
1
r
2

cos 8. e
1

+ r
1

2
cos

2
e

2 1

+ 1.2
2

sin
2
e
2

2r
1
r
2

sin 0
2

sin 0
1

+ r
1

2
sin

2
.

If we apply the distributive and other laws, this becomes

210082 elin2 2(cos2
u
2

+ sin2
1 %/1/ 2

2
(008 ea cos 81 + sin

2
sin 9

a.
)

cos2 e
1

-1:4sin
2

e
1 = cos

2
8 -4- sin

2
0
22,

cos 02 cos el + sin 62 sin el . cos e

ure sUbstitute these equivalent values to obtain

(3) (d(P P
2
) = r
2 2

+ 1.2
2

- 2r
11.2

cos(0
2.1

44
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We,might have obtained this expression directly by app1yi9A the Law of

Cosines to triangle OF,P, in Figure 2-11.

Figure 2..11

Thus the distance formula: n polar coordinates is an application of the

Law Of Cosines..

Exercises 2-4

1. Plot the following.points and for each list three'pairs of coordinates:

(5,135°) (2,90°) (-4,45°) (3,-120°) .

2. Plot the points Whose polar coairdinates are -2,45°) -4,210°)

(3,2) (-3,- 4.) , (4,0°) , (0,1 , (-4,180°)

3. Plot the vertices of an equilateral triangle, the centroid coincident

with the pole and a vertex on the polar axis and give'polar

coordinates of the vertices

4. Draw graphs representing the set of points

set of points ((rye) : 6 = 45°)

4 5
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2.4

6. Find.theyztallgular repretentation of Ihe points whose polar coordinates.

0,are

(a) (0,900)

(h). ("0:45°)

(c) (5,42e)

(a) (4,0()
4

7.. Write a polar representation for the points Whose rectangular coordinates

are

(a) (1,1) (e) (-43,1)

'(h) (2,-2 (f) (-1;

(c) (p,O) (g) (5,2)

Td) (04 (h),

8. Use polar coordinates to find the distance between the points A and B

Then change to rectanlular coordinates and vertfy your result.

( a) g2tt = .( 2,150°) y B = (4,210°)

(b) A ..(5, )
7 %

12).41t)

9. ,

Find the aistance btieen each of.the follbwing pairs of points.,

(a)

(b)-

(c)

-(d)

(e)

(f). A = (5,-60°) , = (10,-330°)

10. On a,poIar graph ehaft such as in Exercise 5 construct a hexagon wilt

Vertices (10,0°) (10,60°) etc. Then'construct all its diagonals

and write the coordinates of all their intersections (other than the pole).

A = (300°) B = (5,90°)

A . (2,37°) , B = (3,109°)

A = (6,100°) B =,(8,400°)

A.= (-1,45°) B = (3,165°)

A . (3,20°) B = (5,140°)

11. Let (r0)00) represent a point P Find general expressions for all

the possible polar coordinates of P

(a) When
0

is in degrees and

(b) when 0 is in radians.
0

7
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2-5. Lines in a Plane.

Now that we have developed coordinate systems for planes, we are able to

disausssmalytic representatiops.of spbaets of planes. We start with the
40

line.

Symmetric.Form. pa Section 2-3 we developed Equation (1),

' 7 '0

"1- '0 71- 7o
46.

Which is the analytic conditibn descrfbing a point P (w) op the
obliqUe line FA p Where Po = (x0,y0) and Pi.= (afiry,i) . (We note that

the requirement.that the line be Oblique ensures that the depominator in eadh

Another is not zero.)

t,
Since every point on the lime nay be describedin this w.0-,

/(x,y) : X° Y Y°1 F P
'xi- xo -yi- yo 0 1 I\

%

We call Equation (1) a symmetric form of the equation of a line.
.,

1 ''.V44.°*W

E4mple 1 . A.symmetric form ok an equation of'the line contaiping the' ...1..4 .4- v. \t'tlepoints
7'..

2,3) and (4,-,1) is

x - 2 y 3 x y 3
or

2

Two-POint Form. If we reverse the order of the members of<Equation (1),

and multiply.by (yl - yo) we obtain
4

( 2? Y1 Y0(

Y Y° xl 1-4(*Okx x°)

We call Equation (2) a two-point form of the equation of a line.

le 2. A two-point form for an equa ion of the,line containing the

points -2) and (4,5) iS

se.

.y + 2 - 1) or y + 2

4 8

- 1)
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We note that in Equation (2) the quotient of differences, or the

Yl 7 Yo
difference qnotiento iS, by definition, the, slope of the segment

X0

PoPi . In your study of geometry you may have used similar triangles to.prove-

that every segment of a giver line has the sade slope. We define the slope
%,

of. a line'to be the slOpie ofislI the segMents on thatline. We denote the
4

slope of a segment or line by m

The two-7point form is not precisely equivalent to the symmetric formi

since it is also defined When yo i1y1 or yt yo = 0 In this case.the

line P
0
P
11

is. parallel to the x-alits has a slope of zero, and is

xepresented by the equation y yo = O.,

-If xo = xi or xl xo = 0 y neither the symmetric form nor the two-

.point form an given in Equation (2) is defined. In,this case an alternative:
A

'two-point form

1

3'11 X0
(3)

J1 JO
4__10

ia defined. In this case the line P
0
P
1

has no slope, is parallel to the

y-axis and is represented by the equatiqn x.- 0 ..

If xo = xl and yo = yl the points Pr,' and Pi are, of-course, not

distinct and no line is deterMingd.

Example 3. .

(a) The line containing

.3 _m 2 1

y 2 =

the points (1,2) and (4,3) 'has slope

and has as an equation in two-point form

4) or

(b ) The line containing the points (2,3) and (4,3) has slope

: 3 = 0 and has an equation in two-point form
m 2

- or y 3 = 0'.

4 9
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The line,contaiiiing the,points .(1,3)' and (1 5) haa,no slope since

5 3 2
1 - 1

is not defined However, it has an equation in an alternative

two-point form:
,

x - 3) Or X - 0
3

For71. Since a line, is deterMined by two distinct points, a.

line in a plane with a rectangular coordinate ayatem ip determined by the
(

coordinates of two points on the line. If a line has slope, it is also

determined by lta sloPe and the'coordinates of one of its points.

2.°5

If a'line has slope' M.- And contains the:point (xvy0) $

the difference quotient in E4uation (2) by.'m to Otain

110 I -g0 3(0) '

We call Hquation (4) a ':(oint-slope form of the equation of a line.
4

. 0

we may. replace

Eample 4. A point-slope form of the line Which contains the 'point

(5,-3) and has slope 2. is
3

+ 3 = (x 5)

Inclination. Occasionally we wish to descrfbe a line, not by its slOpe,

but by an angle relgpted to the slope.

c
Figure 2-12
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In Figur :D2N0e anglei-ec is the angle of inglinatiOn of line L The

mailbure-fOf angle a is the inclination of L The.angle a has the same

-.MeadUre aa the corresponding angle measured'in a'counterClockwise direction

froim the positive.side of the x-axis to the unique line 12' Which is

parallel to L and contains the origin. (If L contains the origin, angle

a corresponds to itself.)

We observe that if L is the x-axis or is parallel tO the x-axis, its

intlination is .0). We also note that the slope of L .is the tangent of

angle a If Po = (x0,y0) and Pi = (21,y1) thenifor the line PoT1

Y1 Y0
tan a, = m

xl x0

For an angle a meaaured in degrees 'or radians, it is alwaks the case that

. 6 < < 180° or 0 < a < g respectively.

Exanale

(a) If the slope of a line is-tg 2 then tan a .43 and the inclination

. a of the tine is 600or 1
73 :

(b) For the line containing the yoints (-1,4) 2,7)

7 - 4
tan a m and a . 45

o or

Slope-Intercept Form. The x-intercepts of any graph are the abscisaas of

the popts of the graph Which are On the x-axis. The xH.ntercepts are the .

ordinates of the points of the graph on the y-axis.

A line has a unique y-interceptcif and dray if its slope is defined.
,

If the slope is defined, the line is distinct from the y-axis and is-estm-

parallel to the y-axis. The line intersecis the y-axis in a single point and

therefore has a unique yfintercept. If the slope is not defined,, the line

either is the yzaxis or is parallel to the y-axis!, In either clae he inter-

section.of the line and the y-dxis does not contain a unique point.

Sinew the lines with uniqUe y-intercepts are those for 'which the slope is

defineds'they are_the same lipes Aidh.have point-slope,forma. The point.:%

2:slope form

I YO =

51
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is equivalent toel

(5)

e

mx (Yo mx0)

275

We observe that the'y-intercept is the y-coordinate of the point Whose

, x-coordinate is zerb. If we let x = 0 'in Equation (5), we find that.the

y-interCept is yo - mixO It is customary to denote the y-interept by b

With this Change Equation (5) becomes
\,

. (6) y = mx + b

-.which is -called the Slope-intercept form of the equation.

Example 6..

The.line with' slope 3 and y -intercept -7 is represented

by the equation y = 3x - 7 .

(b) The line represented by the.equation

y x + 4

3 .- 7 '

whiCh is equltalent to

or

3 12+ 7 +. 2

+
7 7

has sloBe 7 eky-intercept-

Intercept Form. A line laas a unique x-inter-gept if ambihly if it does 4

not have zero slope. The slope is zero if and only if the line either is the

X-axis or .is Parallel to the x-axis. The line is not the x-aiis and is not

parslliq to the x-axis if and only if it intersects the x-axis in a single

poillt. In this case the x-intercept is unique.

It is customary to denote a unique x-intercept by a ."

If the slope of a line is defined and is not zero, both in ercepts are
41"

unique. Since the x-intercept is the x-coordinate of the point whose y-

qoordinate it zero, we let y be zero in Equation (6) and find that the

x4nter'cept a = :2-)m If in addition 0 (neithex a nor b is zero

we may transform Equation (6)

y = mx + b

52



to pbtain

or

-
in

We substitute the value of the x-intercept to ob ain

( 7 ) x 1
b

This is called the intercekt form of the equation of a line'.

.

0,00

Example 7 Find the intercept form of an equation for the line con-

taining the points (-1,4) and (2,5)

Soltifion.

The line has an equation in tworpoiit form,(a)

or

or

y-4=

1 13
y = -x +

3 3
a

13 v
Thp Y.-intercept is and when y = 0, x . -13.. Hence the

3

x-intercept is -13 and the intercept form is

x
+

2 1
-13 13

3

(b) If the intercepts are a and b y the! the line.contains the

poias (a,0) and (6,b) Since the slope is

= it must also be the case 'that
2 + 1 3

5 - 1
and

2 - a 3 2 - 0

46P

53



ft

a . and b =1.2 .
I 3

- Hence, the'intereept form is

.1. =
-13 13

. 3

2-5

General Form. Each 0 the preceding forms of the equation of a lipe has

cerVain'advantages'not only because it is easy to vrite vhen certain facts

ebout the line are knovn, but, also because ead, clearly displays in its

.vritten form cer:iain geometric properties of' the line. However, none of

these forms is defined for all lines.

The symmetric form
x - xo y yo

xi-,x0. yi- yo

. -

is not-defined for a:line parallel to either axis, but if we transfo* the

eqUation to

(Y1 Yo)(f xO) = (Yi x0)(Y-- Yo) $ where x151 xi "or

,the new equation does describe any line in the plane. It order to simplify

this equations we collect all non-2,41Lo terms in onembliber of the equation

and identify the coefficients of x and y and the constant term.

(Y1 Y0>x (xi x0)y x0(Y1 YO) Y0(11 NO)

is equivalent to

We.let

Y0)x (x0 xl)Y +((xly0.-,x0Y1) °

a 7 Y1 YO b x0
,and c -

and write

(8) + by 4- c . 0 where
a2 132

u kthat'iss a / 0 b /.0

fig&ation (8) is called a general form of the equation of a llie. It is also

,aj.led the general linear equation in x and Y

e

145 4

4



2.5 "

and

lbolasw,leil.. Writ:eV* equationi

(a) 3x +.4y - 8 = 0 and

(b) ax +,bi + e = 0 'where 4abc 1 0 2 (that is, a 41'0

C / 'in intercept and slope-intercept form.

4plutiOn.

is equivalent to

or

3x + ii.y - 8 . 0

.

4).
-

which is ln the intercept form.

The oridnal equqtion is also equiva14nt to

3y 4. 2

which is in the slopg-intercept form.

b) ax by c = 0 j Where abc / 0 j

is equivalent to

ax

-C
-where abc / 0

Jr, ,

and

c
- 1 where abc

-

which.is in the intercept form.
1. ,

55

48 \

and.

114



2-5

16

ax -I- by + ,== 0 s where aloe ; 0 .0

is ,quivalent to

by = ax 7 c 14h0e abc )1 0

and

5- where abc 0 sb. b

which is in the slope-intercept form.

From Mcsmple 8(b) we observe that when an equation of a line is

expressed in general forml ihe x- and y-intercepts are - and -
a
arespectively if they exist and the slope of the line is - if.it is

defined.

The great advantage of the general torm is that it can te written for any'

line. Ihe only shortcoming is that the geometric'properties of the line

leas clearly revealed by this form.

-

ixercises

1. Use Equationj4 to Tind an equation.of a line containing (2,-3)

having slo0 2 . Put the equation in general forms, If the lin

'contains the pointi (p17) and (5sq) find p. and q

' 22, Find an equation ofla line with, slope - -3- and passing throUgh (-315) 6

.If this line contains the points (p17). qnd (5,0 I find tp and q r
s.

3. Pind an equation of a line containing the point (Osb) 'and havirig slope

3 . If the line contains the-pelntg. (p,7) and (52q) find p and

q

4. Find an equation of a line containing ihe point (4;5) and having the

same slope as the line 2x - 3y 600 . .Dedcribe the relative position

. of these tmn linesi.

. Write an equation of a line having slope k and containing the point

(as()) . What are the coordinates of the point wbere the line crosses'

the 30-7axis?



Write.an equation representineall lings cOntaining the origin. Are you's'

sure every line ts represented by your equation? Wite the equation of

the one of these lines that Contains the point (-3,5)

7. The.coordinates of .A and B are (305) and (-5,3) , Segments OA

and OB forM a right angle at the origin. Determine the slope of eadh

segment and try to arrive at a general conclusion that you can prove.

Choose (-8,8) an (x61y0) 'and write the equation 3x + l#y - 8 = 0

in symmetrid form.

9. Write an equfltion of the line containing the points (-4,8) ana (2 3

Ehibit the resillt in all seven forms so far discussed. What ia the

slope? What are the intereepts?

4

10. Write the equation ax + by + . 0 in the slope-inNrcept form.

What is the geometric interpretation of ax + by + c = 0 0

(a) When b 0 ac 0 ?

''(b)- When. a . 0 be / 0 ?

(c) When c 0 .0.3p / 0 ?

11. Find.an equation Of a line satisfying the W011owing conditiowi:

(a) Containing tlie point, (3,-2) and having y-intercept 5 .

(b) Containing- the poiht- (30-2) and having.x-intercept. .5 .

(c) Containinik the Midpoint of AB where A = (-7,A4 B

. and the same slope as the line. OA .
-

(d) Containing the point (2,-4). and with inclination 135° .

(e) Containing-the point. (-10,3) and wIth inclination 30°

12. 'In triangle ABC , e=.(1,-2) B (302) (0,4) . Find an.

equation-Of each of the following lines:

(a) 13
.

(b) The median from A .

(c) The line joining the midpoints of AC and pc

13. Find an equation'of a line containing the point P (5,8) which forma.

with the coordinate axes a triangle with area 10 square units.

5 7
50



f'
RevieW EXercises--pectiot?,g:a thilough Sectiop

In'Exercises 1-4 find the graph of the sets described on a line vith a

linear..coordinate.system.

1. (x : 1 < x < 2) 0

2. (x (x - 1)(x + 2 ) = 0)

3. (x : Ix' < 3)

4. (x : Ix - 41 2) .

In Exercises 5 to 9 graph and describe the geometric riPresentation in
doo"

one-spaCe apd 2-Apace.

5. (x : x .

(x lx1 4- = 01

7. (x e < x < 6) .

8. (X 2 < lx1) .

9. (x : lx1 < 6)

*1

10. Find the midpoints and trisection points of

(a) AB = (x : < x < 2) .

(12) BC . (x lx + 21 < 3) .

(c) = (x c<x<d (c + 2)(d - 3) 0)

11. Find a polar represeptation for the points whose rectangaar coordinates
.

are:
4

y(a) (1117) . (d ) (-2,:3

(b) (e) (100)

(c) (3)-4) (f) (0,1)

.

12. Find the rectangular representation for the points whose polar

coordinates.are:

(a) (4045°) (d) (6,4

(b) (34) (e) (5 -135°)

(c) (-2)4.) (f) (-31-Y50°)

5 1. 58



6.

In each exerdise front, 13 to le Write an equation of a line Which

satisfies.the given oondtLns.

13. contains ; m

14. contains (3, 2)'y (8,10)

'Contains (14,-5) , (-6,-1o)

16. Contains (4,5) ; a = 1200 .

17. Horizontal; y-intercept 6 .

18. Vertical; x-intercept 4 .

Exercises 19'= 25 refer to the

figure at the righty, Which represents

a regular hexagon with sides of length

6.. The coordinates of the yertices

are:

A = (6,0, ; B 7 (3,3A/J)

(-3,3V) D = (-6,0) ;

E = (-3,-3A/"J ) ; F = (32-3A/3)

19. Write equations of the lines (l'etermined by each of the tix sides in

slope-intercept form. 9.

20. Write equations of the lines determlned by each of the six sides in

general form.

21.. Write equations of the lines determined by each of the six slides in

symmetric form. Art

22. Find the slopes of A7c , , -Ar and DF

23. Find the coordinstes of the two trisection points of AB BC

EF , and FA .

24. Find coordinates of the points

(a) P is on AB and

(b) Q is on BC and

(c) R is on CD and

d(A,P)

eTEgT
(two answers).

d(B,D)
d(C,R) 4 ,

(two answers

d R where

(two answers).

52
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IF,

41,m, 4,10. .41mo.
25. Find the inclination, to the nearest degree, of AB , AC AE and AF .

26. Summarize the difierent forms of the equation pIf a lfhe in a:table,

listing for eadh form its particular advantages and disadvantagesi

Whic4 form, or forms, of equations.for A line wouldyou use to

answer each of the following questions in.the writ efficient. way? Be

prepared to explain your answer.

(a) Is the.point (3,7) on the line?

(b) Does the line intersect the x-axis?' If so, Where?

(e) Does the line.contain the. origin?

(d) What is the slope of the line?

(e):Find the c:rdinate of the p6int where tin abscissais 5 .

(f) Find e point on the line Where the two coordindtes are equal.

(g) If tfie point (3,3 - k) is on the line, find k .

(h) Sup se the point .P 10 on the line; find the points R and S

on t1 line whiCh are units from P .

' Graph the relations of EXercises 27 to 32.

27. ((x,y) Ixl + I - 10 = 0) .

28. lxi iyi = 031.

29. ((x,y) : x - y <.1)

30. ((x0y) : x y < 1)

31. (x,Y) : ; y < 1) r) ((x,y) x y < 1)

32. R1 = ((xly < R2 = ((x,y) : lyi < 4 = R1 c) R2 .

033. Discuss Exercise 32 if < is changed to < What geometric'

interpretation can you give for R1LJ R2 ?
VA

34. TV° thermometers in Iommon use are the Fahrenheit and Cenitigrade. The

freezing point for water is 32°F and 0°C ; theboiling point for water

is' 212°F and 100°C Derive a formula for expressing temperature on

one scale in terms of the other. Find the temperature Y.eading which

gives thd sameeumber on both scales.

35. Graph the following relations:

(a) It_.= ((x5Y) : 2x 4 3y - 6 0)

(b) R2 ((x,y) (x + y 2 = 0) .



c) B3 = ((x0y) : 5x 2y - 15 =

(PO 4i4 = ((xii) : 2x 3y < 6]

(V) R5 = (Ow). : 1Lx

(f) B6 = ((xW) : 5x

(g) 114 rl R5 r) R6"

Challe e Exertises

Note: The symbol ] is used to represent the first integer < x

or stated in.another way,. -[x] means the greatest integer not greater than

X . For instance, if 0 < x < 1 (x] = 0 if x =:2 = 2.; if

-1 < x < 0 (x] = -1

Graph the relations. r

sl. (a) R
1

= ((x y) [x] =

(b) R2 = ((x,y) [y] = y)

.tc) R3 = «x,Y) : [x] = xl n ((x,y) : [y] = y)

(d) B4 = ((x,y) = x)Ljt(x,y) [y] y)

(v) R, = ((x,Y) kr= brJ) .q

(r). R6 [(x,y) [x] [y
r,

(g) ((x,y) (xl = 1-Y1)

(h) R8 = ((x,Y) [x],= 4yel)

2. Graph r .

4

3., Graph
2

. 6

4. When we introduced a system of rectangular coordinates into a plane, -we

used on eath axis linear coordinate systems in the same units. Then if

Pl = (xlyyl) "4 P2 =

d(P1,P2)

x2a2) -are any two points in the plane, .

54 61
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Supposd instead thnt on the x- and y-axes we use linear coordinate

systems for Which the units are in the ratio r to a respectively,

whqre r./ s *,

(a) Find a formula for d(P1,P2) in the units of the x-4..xis.

(b) 4ind a formula for d(P1.11)) in the units of the y-axis.

) Let' P,I.Q 0 and S be four.Points in the plaLie. With

coordinates (P1,1,2) (qqn) (r1r2) And (pv02)

respectively., Uhder What conditidbm is PQ RS and

N

(P1 c11)2 (P2 (12)

2

sli

2-

(r2
2

Find the graph of S = ((x,y) :(4X +.3Y = 0) . Can you fina a

simpler.analytic representation for the grtph?

6. What is the graph of T = (OW') (ax +.by + c)
k

= 0 0 Where
2 2a + b t 0 and k is-a positive integer) ? .Can you find asimPler

analytiC representation for the graph?

* 'Find the intersection of Li = ((x,y) : 3x + 2y - 1 = b) and

L2 . ((x,y) : 2X - 3y + 2 = 0) .
e.

8. Find'the graph of U = [(x,y1 : (3x + 2y - 1)(2x - 3y +

9. Find tick graph of V = ((x,y) ('x +.4y)(x - y) . 0) .

10. Find the 'graph of W = f(xly) xy = 03 .

111* Assume that Lo = ((xly) : aox +'boy + co = a
0
2

+ b2,
o

t 0) and

P ' /= ((xly) : aix + bly + el , 0 al + bi
2

r 9) have a unique point

(x114) in common. What can'you sny( about xi ?id .yl if ao 0 al

b b c
0

arid c
1

are

(a) integral?

(b) rational?

(c) real?

(d) complex?

, 12. What can you say about the graph of

(1) R = ((xly) : (3x 2y +,2) + k(x + y + 1) = 0 , where k is constant)?

(ki) S = ((X,y),: (x + y + 1) + k(3x, - 2y + 2) = 0 p where k is constant)?
(c) T = ((x,y) : m(3x 2y + 2) + n(x + y + 1) = 0 0 Where m2 + n2 / 0

and m anq n are content)? '

62
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13. :What _can you say about the graph of

(a) U . i(xsy) : (3x - 2y + 2) + t(x t y + 1 ) 0 s'where. t /0 a

real variable)

'(b) V f(x,Y) : (x + y + 1) + t(3x - Qy 2) = 0 pf where t is a

-real variable)

) W =4(24y) : 6(3x - 2y + 2) + t(x + y + 1) =0, Where

.and s and t. are real variables)

14. ,Assume that tiie linear equations aok.+ boy + co . 0 Where

ao + bo F 0 and ail( + biy + cl = 0 s AINIF + b F 02 2 , 2

not equivalent. 'What can you.say about the graph of

(a) R ((x,Y) (aox + boy

k is &instant) ?

= ((x,y) (six + bly(b)

+ co) + k(aix + bly + cl) =

+,C
1 .k("s'ox oy

C

are

; where

) = 6 , where

( )

(d)

( )

k is constant) ?

P - ((xsy) (ace( + boy +
o

+ t(aix + b y
1

t is real)

U = ((x,Y) :
+ bIy Cl +.boy + ao)

t is reap ?

+co) + n(aix + b
1
y + c

1V,. ((xsy) ym aox + boy

2m + 0 s and2m and are constant) ?

0 p where

. 0 s Where

= 0 s-where

1 . What

(a),

(1;)

(aox + boy + c0)

2 2
t and p and

is th,Pgraph of

S = ii(xsy) : 0 = 1) 7..

T ==.c(fsy) : 1 = 1)

63
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2-6. Direction on a Line.

Although there are two senses of direction imblicit in our intuitive

notion of a lines neither one is dominant or primary. Wbsin we represent a

line analyticallys we mey_suggest a specific sense of directio 'for tbe line.

When We undertake a geometric description401 theline in te of an_219di-
ated angle, we suggest a sense of 4rection for4the line if a side of the

(--

angle is contained in tbe line.
a

In this.section we shall intrAucesome of the analytic ideas and terms

'which may be us5d once a sense of direction bas been assumed for a linkl We

shall also donsider the geometric interpretation' of the ideas.

When we

of, direction

speak of the

on the
)

4line segment from Po to P1 0 we suggest a sEne

Tf 13.0 (1:C.140)
and 1/1 = (x1ay1) s thenumber;\

./xo and m
1
y y also suggest this sense of direction.0

9 .

The numbers i and m are.èalled direction numbera_t5 L For the
ordered pair of direction numbers ve use the symbol (2210 Since this

symbol is also used for a potht; care must be exercised to avoid.amblguitY.

Clearly a line hasinfinitely manY Pairs of directiOn 1U:tubers, since there

are infinitely many yeirs of points Po ana which determihe How-
. 4-

ever, all the pairs for a given line L.. are related in a very simple way. -
If L has a slope and (ism) and (Ppm') are two pairs of direction

for L s then :71 = nd'there 10 a number c / 0 Ouch that>,

.ci and mt = am 'If L has no slope; there is still such a number c

&ugh ihe argument'above does not prove it. If two lihes are parallel, a,

similar= argument shove that any two pairs of direction nuters for the tun

are related in ibe same vv. Thus it/is natural to make the following'

definition:

DINI
be e

nuMber.1

The pair i m) bt direetnnumberais said to.

t to the pair (21.1m9---44-and only if ilhere,is a

1.0, sucli that ci = cm .

The preceding discussion can now be summarized in the following statement
'A

Two distinct\lineli in a plane are parS1101'if and only if any

,peir of direCtion numbers for one is equivalent to any pair

for the other.
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A Pair '01,m0 .of direction nuMbers for a line L marbe.said to

determine a direction on the line-in. the following sense.. Let

Pio (T0,Y0) be a fixed point of L and P = (xor) 'any other pont of L .

'Then x - xo = ci arid ory -_yo = am or

#.
y
0

+ cm y where c 0 .

4 ,

The 'point P
o

separates. L into two sets of points; the points on one side

of, Po are given' by positive val*es of e . Po and the points of L given

by positive values of c form a ray, which we call the TOsitive ray (en L)

With endpoint wPo 1. If P1 = (x1yy1) is another point of L p then Pi and

thegoints P = ( y) given by

x = xi + ci

yrr y
1

+ 'where c 0

form another positive ray.on, L The intersection set of common point6) of

the positive rays'with endpoints Po and is one of those two rayd.

Intuitively speakingi'all the positive rays point in the same dil.ection on

L The pair (ci,cm)' of.directign numbers.determines the same direction'

on L as (2,m),.if and only if ,c > 0,

If ( m) is a pair of direction nuMbers for

(2,0 7 (

2

m

16 + mF 1/77.77

the equivalent. pair

is of particular importance. puch a pair is sometimes called a normalized

pair. you should observe' that /
2

+ = 1 .

-46\ Let L be a line in a plane with a rectangular coordinate system and

;et L' be the lineparalle1 to L which paSses througk.therorigin. ,(If L

Contains the origin, LI = L .)' Then L and LI have the same pair of

direction numbers (i,m). Figure 2-13a shows the situation if 2 > 0, and

m > 0 p hgure ..131) if i > 0 and m < 0"; Figure 2-13c if i < 0 and

m < 0.1 and Figure 2-13d if 1 < 0. and m > 0 .

65
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f

Figure 2-13i

NO
Figure 2-13c

r dr.

The arrowheads show the'positive dtrecttons on t and. LI p The an4es

a

Figure 2 -13b

2-6

Figure 2-13d

ov and 13 areq,called the direction angles of the line L with the positive

direction detexmined by ,the pair (70 ,of direction numbers. Let is the

'ailgle,formed by the positive ray pn Lt with thb origin as endpoint, and the

positive half of the x-axis. ZO is the angle formed by the positive ray on

LI with the origin as endpoint, and the positive half of the y-oxis. We

note that the direction angles are'geomettic Ahgles, with the-single exception

that their.sides may be collinear. Hence, .0 < a < 180° and 0 < <_ _ _

If c > 0 , each equivalent pair (ci .).10of direction n4imbers for L

is.aliothe pair of coordinates for a point on Lt . The point with (71L1 ) 2.

the normalized pair, as coordinates has been indicated in Caeh Case of

Figure 24 Consideration of these cases reveals that, since 7
2

4 W. ,--

5966
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cap a = N , and Cos 0 4 . ,The Osines Qf direction_ angles of a line L are

called direction cosines for the line.

The direction nuMbers0'angles0 and cosines of am R are defined to,

be the direction nuthers0 angles, and cosines, respectively, of the line

containing R with positiVe direction determined by R

EXample 1. Whfit are the pairs of direetion nutbers for the line

determined by the points 1,10 (-207) and 131 . (60-2) ?

Solution. One pair is (-2 - 6,7 - (-2)) , or (-800 but atly

Tquivalert pair (-8c09c) 0 where .c 001 will do. Since pair (2

. -8
must be such that - =. or 92 4- 8m = 0 we may write thi

m 9
.

0
) : 91 8m . 0 22 m- / 0) .

Example 2.
#

(a) What are the direction cosinet and the measures of the. ec on

angles for theline L with the positive direction determin by .

the pair (111) of directioin.nuMbers?
r

(b). What are the direction cosines and angles for the same line

but with.the positive-direftion determined 1)y the equivalent pair

d.4

( -1, -1) b?

Solufion..

44 :j

(e) cos a != .and cos 0 I=

Ah 2
m'2 e m

-0 pr

Therefore0'cos
1
- and cc = 45

o
.

1

. )
4/5

'-1
_--1 and a = p = 135° .(b) In this case, cos a = , cos

AP

Example 3. Find the direction angles and direction cosines of the line

through (1,2) with positive dirtion determined by the pair i(=1/1,1) of

direction numbets. Do thesame when the positive direction is determined by

the pair (IT, i)



%6
.'21Solution. In the first case, 7% = and i = -2- . Since by

2

definition 0 < a < 180G and 0 < 0 < 1800, , and sinee :cos a = .A and

cos
a r see that 5a = 1500 = 60() If*ve consider the other

13
-
diTection. on L ye hinre Cos a = -57., cos 0 = Hence ct = 300

.=l200.

2-6

VP '

Etallpled 2 and 3 suggest as carefUl distinction to .be made. A line had
,

unsensed direction, & peAtaps it would be better to say that two oppOsite

senses of direction acre pimplied for d given line, but neither one is

dominant. Some of, le pairs direction nuMbers for. a liny( imply .gadh

se nip but if we select, a single pair,. we sefedt a single sense of direction

as well. Direction-angle* and direction cosines are defined only for g line

with a specified sense of direction. 1,76'dhall call such d line a directed

line. The sense,of direction maysbe specified by the context, sudh as the

choice of a single, pair. of direction nuMbers ror the line.

In Figure 2-14 we observe that

either La and b3 or be al'ad '202

udght the directiont angles for line- L

Since a +, at. 1800 and 0 + = 18o° y

Ire note .that cos al = -cos a and

cos 0 =, p . Thus, if the

normalized pa;r Ok41) of direction'

1;lunipers are. direction coptnes for a

directed line, (7*y.11) are the pair '

of direction cosines for %the same 'line,

with optosite direction; if la and

Lt3 are direction angles for a

directed line their supplements are

direction angles for the same line

with opposite direction.
0

Figure 2-14

3:lamAple, 4. Find direCtion nUmbers, cosines, and angles for the lines'',

.( a) ((x,y) : 3x-,r 4y - 5 w 0), and

(b) ( (xy) ax by + d = ,,b 0) .

1.

61 4, 5 8

S.
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Solytion. t

we observe that it nonvertical line has a Pair ( of

direction numbers and an equation in general form, ax + by + e = 0
m a

then the slope of the line is given by botn 7
Therefore

Since 3x -

i 3 (4 3)

4c,.3c) , wher

Vhere Lb / 0 .

and

5 = 0 is in general form, the slope of the line'

s-a.lair of direction nuMbers, ;Ii.nd any other pair

c 0 is an equivalent paiY of direction

nuMbers. The normalized pair' (7,11) of direction number), pr

diredtion cOsines cos a and cos 43 is eit?fer

(

4 , '3

42 32
vi' 3

e 2

;).

defending on which aense of direction is

We use tables of,trigonometric functions

or

V.
5 ' 5

adopted-for the'lfne.

to discover that the

measures a and 6 of the corresponding direction angles are
o o ID

(aPproximately) 3( ° and 53. , or 143, and 127
-

respectivaq.y. i

(b) For the general,form of an equation of a line ax + by ,+

a
Where b / 0 , the slope is - To- . Thas, (-b,a) (b,-a)

, in general, (-bkok) , Where k / 0 are pairs of direction

.nuMbers. The normali d pair

(Af

f--= 1

a A,/a +
i 2

+ b
n 2

a

depending on the sense

or pair of oy.rection cosines, is

or ( b -a

v/77---77
a + 10al---- a + b

of direction. Once the direction cosines.

are found, the direction angles are uniquely petermined)

definition 0 < a < lao° and. 0 < < 180° .

.0"

69
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EXample 5. Consider the line L = ((x,y)
. a

14.

1 ab 0} .

2-6

Let. 0 be the origin; let A and B be the points of L on the x- and

y-axes respectively.

a

(a) Write an equation of L in general form.

(b) Find the length of the altitude OC on the hypotenuse of right

triangle,- AOB -

.

(c) Find the direction cosines of OC .

(d) How are.the ooefficients in the answer to.Part (a) related to

the results of Farts (c) and (b)q

Solution.

(a) + = 1 is lquivalent to bx + ay ab = Which is in
a b

general form.

.1 I

(0) The area of QADB is equal both to --labia and to
2

1.4777 /dkOIC) ; hence
/
Lehi =2477* d(0 C

2 21 1

A talS1
0 Thereforel.the length of OC = d(0 C)

cos a = cos LABO - Why?)
a2 b2

cos 0 = cos PAO -
a

(Wl.iy?)

(d) Lastly, we note that the results

of Parts (c) and.(b) apart

'from a possi e difference in

proportional to the

coefficients in the equation

obtained in Part (a). The

constant of proportionalitY

1

7-17.)7

(r -1

a/Tfmnb2



Exercises 2-6

Find pairs of diwction numbers for the line through eadh pair of.pioints

given below. Use both possible orders.

(a) (5,-1) (2,3)

(b) (0,0) (4,1)

(c) (2,3) (2,3)

(d) (-1,4) (-6,4)

(e) (1,1) (2,2)

(f) (-1,-1) (1,1)

(g) (1,0) (0,1)

(h) (2,-2) y (2,2)

2. Find the norialized pairs of direction nuMbers for the lines in

Exercise 1.

3. Find the direction angles of the lines in EXercises 1 and 2.

4. Given the pairs (3,-4) (2,0) (0,-3) y (-1,2) d (-2,1) of

direction number,

(a). find the slope of a line with eadh pair as a pair of directiOn

nuMbers

(b) find a pair equivalent to eadh pair, and find the corresponding

direction angles

(c) draw the line through,the origin with each pair as its direction

nuMbers, and indicate the positive direction on each line deter-

mined by the pair (DO not draw too many onOne sketch

(d) indicate on your sketches the direction angles of each directed line.

5. Let Po . (xo,y0) Pi = (x0,y1) ,.and P2 = (x0,y2) be any three

distinct points on a line parallel to the y-axid in a plane with a,

rectangular coordinate system. Show that the pair of diredtion nuMbers

determined b, y Po and PI and the-pair of direction numbers determined

by Po and P2 are equivalent.

6. Let a an'd 0 be the direction angles ofYthe line-- L with positive

direction determined by the pair (ilm)" of direction nuMbers, a'

and DI the direction angles ofP L with positive direction determined

by the pair (-4-m) of direction nuMbers. Prove that a and a' are

supplementary, and that p and DI are supplementary.

7s Assume that in each part of Figure 2-13 a Polar coordinate system has

also been introduced in the usual wmy. Let c) denote the measure of a

polar ahgle which contains the positive ray of LI with endpoint at

the origin.

(a) Show that in each case sin ch - cos 13 .

(b) Show that sin 0,) = cos p for any positive ray lying on an axis.

416
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Ilef4

'Find pairs of direction nuMbers, direction cosines, and direction angles

for the lines L M , and N , where

(a) L = ((x,Y) :

(b) M ((x0y)

(c) N = (4(x,y)

2-7. The Angle Between TWO'Lines; Parallel and Perpendicular Lines.

We have developed various forms of an equation of a line. Here we shall

.use equations to arliwer a question about the lines theyrepresent: What angle

is formed by tvo lines? In particular, are tvo lines perpendicular or parallel?

We observed that the slope of lines parallel to the x-aXis is zero, and

that lines paralel to the y-axis have no slope. Because of the customary

orientation of the axes we usually refer.to li5es parallel to the x-axiawas

horizontal lines ana to lines parallel to the y-axis as vertical

65
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In Figure 2-15 me indicate two nonvertical lines L1 and L2

intersecting at the point Po = (x0,y0) . The verticalline represented by

the equation x = xo + 1 will intersect these lines at Pi and P2

respectively. If we represent the slopes of L
1

and' L2 by mi and roL2

AspectiVely, the coordinates of Pi and P2 will be (xo + 1 0 yO + mi)

and (x0 + 1, yo + m2) respectively. If in triangle PoP1P2 we apply the

distance formula and the Law of Cosines in terms of 2P1P0P2 7 ye we obtain

or

))2 (d

lY 21i
) + (d(P

2
))2'- 2d(P

07
P
1
)d(P

0,
P
2

) cos 0 y

This is equivalent to

+ 1 + m
2 1-fint722 cos 0 .

2 41-
-231m2 2

447-47:17 1 + m
2

72
cos e P.

cos e

1 + mim?

11 4 m1211 +772 \

ticiExample 1. .Find the meas of the angles of intersection, between the

1
lines represented by the equations y = 7.-3x. + 1 and y 2x 4 1 .

a

Solution. Since the.equations are in slope-intercept form, we perceive
1

immediately that the slopes of the lines are - and 2 We substitute these
3

values in Equation (1) to obtain V

+ (i)(P)
5

3.cos 9

1-17(---7 i4777 4(7
9

L IT) 172
3

Thus e .,_. 45
o

y and the other three angles of intersection will have measures

of 45
o

y 135
o

, and 137
o

.T
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In your previous courses you discovered that two nonvertical lines Are

parallel or the same if and only if they have the same slope. Clearly-all

vertical lines axe parallel. You also discovered that two ponvertical lines4

are perpendicular if and only if the product of their slopes is -1 It %

should be clear'that a vertical line is perpendicular to a second line if

and only if the second line is horizontal.

In Equation (1) we note that the lines are 'perpendicular if and only if

C2) cos'e = 0 or Ilya° = -1 .

Example 2, Find an equation for the line L which contains,the point

p . (4,3) and lilch is perpendicuLar to the line represented by the equation

2x +,3), + y

Solution 1 In!the previous section we observed that the slope of a line

represented by an quation with general form ax + by + c = 0 1 (b / 0) ,

- a 2
is - 17, Thus.the e above has slope --

3
. If L is perpendicular to

lp
the given line, its slope ust be such that

2
-
3

Since L contains P - (4,3)

This th equivalent tO

or

3or m =

it has the equation in point-slope form,

(y - .J.(x 4)
2

Y 0

3x 2y - = 0 .

Solution 2. We might have developed a more genera] equation for a line

which contains P and which Is perpendicular' to a line wlth0
xoyy0

A

equation ax + by + e - 0 (ab / 0' We observe that the stope m of L

must be-kuch that

a
- IT)m ,-- -1 or

a

Thus L must have the equation in point-slope form,

Y Y0 71(x



'This is equivalent to

(3)

11/1

If substitute , :, necific values for a , b , xo 1 and yo in this

gen al equation, ve dbtain

WI ,

84Y0)

3x 2y - (3. 4 - 2. 3) 0 or 3x - 2y - 6 .

If we,generalize the nOtion of angle so that ve may sPeak meani

tf the measure of the "angle" between two parallel lines, we mmy Obtain both

these results as corollaries to the more general problem of determining the

angle between two lines. Let tWo parallel directed lines have the same sense

of ditection. Then ihe'projection of eadh positive ray of one line on the

Second line is also a rayirand cancides with aos1tive ray of the second line.

The cOineident rays form angles Vhose measure is 00 or' 0 radians. When

two ptra1le1 directed'lines have opposite senses of direction, the projection

of eadh poaitive ray of one line on the second line is also a ray, but in thls

case, it is opposite to a positive ray of the second line. The pairs of

opposite rays form angles whose measure is 180
o

or g radians. .We speak

of parallel and antiparallel directed lines respectively to distinguish'

betveen these two caSes.

e Vreceding discussion suggests the follpving conventions. The

measure of the ang/p between two pjiel directed lines is said to be 00

or 0 radians. The measure Of angle between tvo antiparallel lines is

said to iv 1800 or A radians.

Although-the Law of Cosines was not developed for angles of measure 00

or 180° 1 the relationship it d6cr1hres is still valid. We shall leave the

justifcaifon as-an exercise. If this extension is made, we moy apply

Equation (1) to parallel And antiparallel directed lines. In these cases,

equivalent conditions are that cos e . 1 and co 9 . -1 respectively.

Thuci, if the lines are parallel, cos e = t 1 anfEquatlon (1) becomes

1 4, mim2

A

This is equivalent to

Or

4.4
mi

2
+ m?2

+

(1 + Mit2) (1 MI2Y1 + M2 Y.

2 2 2
1 + 2m1m2 + mim2

2
7 1 + + na2

2
mi m2 .

68
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This becomes

or

2 2
2m1m2 m2 $

WhiCh is true if and only if mi F m2 .

if.and only if

(10

2-7

nonvertieal lines are parallel

cos 9 = - 1 2 which is equivalent to mi = 102

Thus
4
we may express the condition that two nonvertical lines are parallel

either in terms of the angle between them or in terms of their slopes.

Elample 3 Write an equation in general form for

(a) the line containing the point (1,2) and parallel o the_

line L = ((x,y) : 3x - 2y + 6 . 0) and

(b) the line containing (x0ly0) and parallel to.the line

L ((x,y) axi+ by + c = 0 , Where b t 0) .

(5)

Solutions.

3
(a) The slope of both lines must be so the required line must

have,as an equation in point-slope form,

y 2 -

This is equivalent to

2y - 4 = 3x - 3 or 3x-2y+1rO.,

(b)
a

The slope of both lines must be - 1-3 , so the required line must

have as an equation in point-slope form,

This is equivalent to

or

Milert

by - by0 = -ax + ax0

ax + by - (axo + by
o

, 0 .

69



Since equations rePrehsenting lines are frequently given in general form,

Write an equivalent expressionito Equation (1) for the cosine of the angle

en:two lines in termOof the coefficients in the equations,
\

'74111t two ponvertical lines LI and L
2

have re pecZive slopes al. and

lia2 and be represented by the equations
a

+ bly + ci = 0 Where a,
2

+ i 0

and

a
2
x + b2y + c

2

We havle observed that

al

Where a
2

+-
2

0 .

a
2

and m2 . IT
1 2

If we sUbstitute these values'in'Equation. (1), we obtain

Which itipquivalent to

cos 9

or

(6)

a1a2 +.blb

b
1
b
2

ala2 + b1b-2 .

,b
1
b
2.

2 2
b2

b12 422
+ bi

bl
2 b2 b

1
b

Cds
a1a2 + 1)11)2

fai2. + bi2 Ia22 +
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Since ai2 +b12 II 0 and a22 b22 0 Equation (6) is always defined.

Furthermore, Equation (6) is valid even when 4111_41Or L, is vertical. We

Shall leave the justification as an exercise.

When two lines intersect, two pa4ra of vertical.angles are formed. If

the lines are not perpendicular, two of the afigles are acute, while the othe;

twqare obtuse and supplementary tell the acute angles. The cosine of an acute

angle e is positive, While its obtuse supplement Z9t is such that

cos et cos e Thus, if we viSh to obtain,only the acute or right 'angle

between lines Li and L we conSaer

'1 aia2 bib 1

cos 9(7)
Vai2 via2?

Example 4. 'Find the measure of the acute angle between

Llis= ((x,y)
: 21 + 25 - 0) and L2 = ((x2) : 3x - ?y- - 5 = 0) .

Solution.

cos
12. 3 + (-7)(-2)1

2° 762
53 3-3'

.A/22 + (-7) "44747(777

and e z ito° .

Example 5. Let ;(g1,m. and (i0,m2) be pairs of direction nuMbers

for aines L1 and L2 respectively. Show that L1 is perpendicular to

L if and only if + m1m2 0 . 4

Solution. T14 mr.?;Ugeests a special cass of' Equation (6),

cos 0 =
+

2
la .2 -4-b
2 2

`.
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Where .s$1,b1 and a2,b2, are the coefficients in general forms of equations

for LI and L2 respectively. We,Fe considering perpendicularity, Which

is equivalent to cos e = 0 or the condition .

ala2 + b1b2 . 0 .

We.have already observed that (-b,a) are direction numrs for a line

L = ((x,y) ax + by + c = 0 2 Where a2 + b2 0). This is true in general,

as we shall ask you to justify in the exercises. Thus we may write

e.-,Acim - kail a2 = k2m2 and b2 = -k222 Where: Xi, and k
2

are

A constants su6h that ka
2
+ k

2

2
r. o We substitute these in the necessary and

ficient condition above to obtain

40 klmie k2M2 (kril

Which l.'s equivalent to

(8) m1m 2

Since the three, equations are.equivEllent, both the statement and its corverse

follow,

Exercises 2-7

1. Show that the relationship described by the Law of Cosi,nes,

(d(A,B))2 = (d(A,G))2 + (d(B,C))2 2d(A,C)d(B,C) cos C

is also vend in the cases illustrat'ed by

,(a)

and

(b)

A

A
AM

That is,Austify the use of the Law of Cosines with angles of measure

0
o

and v.)

72
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01

2. Sholi that Equation (6) in the text is valid when

(a) one line is vertical. (Let Li = ((x,y) alx + cl = 0 , al./ 0)

and L2 =. ((x,y) -a2x + b2y + c2 = a , a22. + b22 / 0))

(b) both lines are vertical. .(Let1 Li =,f(x,y) + ci 7 0 , al.

- and L2 = ((x,y) : ax + c2 = 0 a2 0).)

3. Villa, if any,.of the lines with the given equations are parallel

perpendicular? the same line?

: 4y = 12

4
L
2

y = x 3
3

L- : 8x 4- 6y - 15 . 0

x y-x - 3 , y - 1

-11 - 1

Find an angle.tetween each of the pairs of lines with' the given equations.

(a) ax - 3y +:1 = 0 x - 2y + 3

(b) x + 2y + 3 y 2x - 4
(c). y 3 , y = 7
(a) 3x + 2y + 5 = 0 x - 2y + 5 = 0

.(e) 2x - 5 , 4x 2y + 7 0

(f) y = 2 y 3

5. If P (a,b) Q = (-b,a) and a2 + b2 / 0 , show that OP I OQ .

6. Let Li . ((x,y) ; 2x - 3y + 4 . 0) and L2 = ((x,y) 3x + y - 2 = 0) .

Write an equation in general form of a line L
3

which is:

,(a) II Li and contains the origin.

"(b) II L
2

and contains the point (1,5) .

(c) L and contains the point. (3,4)

(d) ri L
2 and contains the point (2,-1) .

7. Find an equation for a line meeting the following conditions:

6

(a) Parallel to L = ((x,y) : 2x - 5y + 7 . 0) and containing "Pi = (2,7)

(b) Perpendicular to L = ((x,y) : 3x + 2y - 1 0) containing (2,7)

(c) The.perpendicular bisector of AB if A = (-3

(d) Parallel to the I-axis and containing Pi =

(e) Parallel to the y-axis'and containing P1 = (5,7) .

13

d B = (5,-1) .
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Quadrilateral ABCD is a parallelogram.

if A = (1 p) p B = (5,7) C = (81-3)
of the parallelogram were not specified,

there be for D

. A line Li malses an angle whose cosine as -2-
10 .4'6

L2 . .((x,y) : 3x y + 5 = 0) . What is the slope

Find the coordinates of D

If the order of the vertices

how many possibilitfes woUld
4

ft

Find, its equation if it contains the point (1;-2)

10. Let 'kg.= K5,1)- 2 = -213) ,aid d (-3,4) .

(a) tdrite the eqUations of AB BC 2 and CA in genNal form.

(b) What is the slope of^.each. of these

(c) Find tile measures of. the three angles of triangle ABC

with

Of

(d) Wte equations of the lines containing the altitudes of

triangle ABC in general,

11. Let L1 =41(x,Sr) : &Aix + b1, +

L2 = t(x,y) : a2x + b2y

1. .6

Let L
1

be'perpendieular to

let L
2

1 be perpendicular to

'Co

(b)

( c)

Wrlte equations for Li1

If L
1

and f forxan
2

form.

el = where ai + bi2 0)

2
c2 0,, where

s2

2

+.P2 Q4

L
1

and contain the origin and'
L2 and contain the origin.

and L21 in general form...,

Le , prove that tiere is an

by L11 and L21 such that cos co = Cos. a .

Interpret the results of Part (b). / n' words.

12. tShow that if 'lines LI

(NIA.11) and (')% P2)

(a) Y2 4142

(b) + 11421

cos

and L2 have gala's of directAon

respectively, then

6 , where Z9 is an

= cos

L
1

and 1.2 and NI

(e.) \1?N2 4142

y yhere Le

and

A.

formed

co sines
1

angle formed by

the least angle forted by

d only if LI and LA are perpendicular.

81
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-8. Norval and War_ Forms of an iquatiOn of a Line.

In this settion we shall introduce forms of an equatioA of a Iine which .
#

clisplay the geometric properties discussed"in the ladt section. We shall also

consider a related exi5ressioff%for the distance between a point and a line.

. Normal Form. .The resultd1of Example 5 in Settion 2-6.suggest another

characterization of a line in a plane. This characterization leads to yet

another/form of an equation of a line; the form has several useful applica-

",.

tiona.

p.

Once a,rectangular coordinate system

directed segment OP 2 emanating from-the

point P in the plan-421S detqeMined by

direction 0Otine82 cos a = and cos p

has brelMsfined in a plane, any

origin and terminating at another'.-.

the distance d(02P) and the
##

=. p. 2 of the ray 'OP . In the plane.

any line L Which does not contain the origin mayhe described simply as the

set of A4nts which is perpendicular, or normal, to the directed segdent. OP
4-

at P The directed sdgment, OP id'also said to'be normal to L 2 and is

called the-normal segment of L ."-The distance d(0101.is called the normal
.

.diatance of' L hand is2,of course, he distange from 0 to L ).

fn Figure 2-16 we let OPo'be the (#

normal segment of L and let t d(02P0)

Then P
o

kp cos a p cop (3) = (pA,p0

Now 40,2p1.1) is also a pairsof directiOn

-#61.

numberie for the line OP If p = (xly)
.0

islwy point of L other
0 2.

(x - p?\ y p4) is a pair.of direction

numbers for L

As wr have se in Examp1e-5 of

Section .in normal to litIP0 at Po

if and only if /A(x 0) + 111(y _ p4) - 0

We ndte that the coordin4tes of the point

P
o

Ote satisfy this equation. Figure

kk*



.!

4*

2-p,

OP.
The equation is equivalent to

Since Aa +

')x 1-1,Y 7 POi2

1 this May be written as4

et

Whieh is called.a normal form Of an equation ofa line. We cannot stress too

strongly:that in this form ana 4 are mot direction cosines4 the line
a

elf, but pf th&normal aegment. Tht constant p.'ls always.ppsitive and

the distance between the origin and the line.

,

'We may always express an equatioA of a line in general forWEXample -5

-.in Section t-6 also suggests how we may find the normal form of an equation of
. .

'a line 11, which does not contain the origin. Let V., = ((x,y) ax + by + c
2 2

where a + b )c / 03 . Thq:normal form'of such an equaticinis a special case

of the general form. Both ai-e lifiear eqtations, and two linear equations are

equivalen-Cif anA only if their corresponding coefficiehts hre propprtional.
, .

Thus,,ihe pair (a,b) is equivalent.to the,normaled pair (X,14) of

direction numbers for the normal segient. Codhequently, (a,b) is a pair of
L_

direction nuMbers for the normal aegment.and

-a -b
or

+ b. a + b

Our 4ho1ne'between these. twosposaibilities

that, -? 0 If c < 0 in the equati6n

ir7"--T,
a + b to obtain-thc normal form; if

Off

'Exampile

1

Solulion.

2 +.(-10P = -5 to

is determined by thewequirement

ax + by + c.= 0 we divide by

1a 57-77
e 0 .we divide by +.b .

Frite 3x 4y t 12 = 0 iza noruittl form.

Sinue the constant term is-popitivel we divide%by

obtain

4.1.1,e see froi 1,he equatioh tha

Al.
cop /3

&

- 4x y
5 5 5

the no4pa1 d

7 6.

f

3stance is cgs a - ), and
} :-3 ,

II

,
I
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ExaiMp1e3( Put the equation -61 - 5y - 20 = 0 in meal form.'

Solution. x y
6 5 20

161: 161 161

2-8

We ha-Are not considered lines containing the origin. In the general form

of an equatian.fOr .C: is 'ero. . There is no direäted segment

norn3al tO tlie line emanating'frnm-the prig nor is thered-umique standard. %.

procedure in thil cap04.1 Some Inathetaticlans hold that there are two normal

.forms.corresponding to thenormal rey§
-

'OF and Navas illustrated in FigAire

2-17; others prefer a unique gorm corre-

sponding to the normal ray for which

. 0 < oL,<.1800 and 0 < 0.< 900 . In'-
the first.cese we obtain a normal form

by dividing a generaf form with c = 0

by eiiher 1b2 or -.44477717

in the seeond case, we obtain a-unique

'normal form by dividag by

2 2 17-7Ihen b > 9 1 by - a -Orb

When b < 0 and by a when b-= 0 .

You may follow either conventicin.

de-

FigUre 2-17

the ,normaT.torms df equations of the lines.

(ai LI ,..1(x,y) :.3x 414.= 0) .

(b) L,, = (,(xy3r) : 3x 2y- 0) .

(c) iL3 (Cx,y) : -2x - 0) .

SoIUtion.

3 4
(a) Alternate forms: -x = 6 or -y , 0

5

4Unive form: + -y 0 .
5

P
(b ) Alternate'fOrms: - y = or . x

113 1173 117

Iklique fan". 2 -1:x 4

115

(c) Alternate Porms:' x 0 or,,- 0
.

:

Unique form: x = 0 .

4

-1E-3

. .
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A useful application related.to the normal form is to find the distance

betwen a point P1 = (x1,y1) and a line L = ((x,y) ;.[ 4- p = 0) .

We illustrate this situatiOn in Figure

2-18. F is the projection of P1
L

Onto L and we wish tó find d(PlIF)

There exists a unique line 1,, Which

is parallel to L ,.and which contains

P1 . LI is represenied by lhe .equation .

?Ot 4y - p1 = 0.6 Since Li contains.

(x1,Y1) Axl P1 ° or

pl "xls.+ 4Y1
\J

.There are sereral.cises to.consider,

including the following two: -. Figure 2-18
0

i) 0 and P1 .are on opposite fides of* in Fi re 2-18. In this

easel -0(15111) 101 p = 7\x1 + psi - p

l

ii) F1 is on thOtsame side of. L itS 0 ; P1 is farther than 0 from

L In this caserathe.norMol segment to L1 has the opposite sense-. .

of direction and Its direction cosples arc -?1-4 . Hence, its

normal distaAce is pyi ar p "d4

d

d(P1 ) = p -p1) = 17\x1 P

You may flrqt helpful to drai a figure to 11 utrat the spcond situation. `

We leav he other possibilities as an exercise. In each case.41e

distance efd between the(poipt P
1

- (*xLIYa ) and thcaline

,

L (Ow) : -)0( + p = 0) 1,s given by

+ byl +

C.2). + 1.131.1 - p
N/77---77

I
b

Example 3. Find ttie, distance .btween. P = (31:10)6 and

'L - ((x,y) : :3x - 1,? '0)

Solution. From Equation (2) we obtain

3(3) - 4(-ao) 1+P 61
d

.5

(8 8 5



Polar Form. The analytic representation of a line in a plane with a

pdlar coordinate system is similar to the nOrmal form.

Figure

InTigure 2-19 we illustrate a line L in a plane with a polar
-

coordinate system. Let OD be the normal segment to.li 2 let'p be the

normal'distance0 and let .4i) be the polar angle of D If P (r50 ) is

any point cl;f L other than D then in right triangle ODP we have

( 3) - i cOS(0 ) =P

2-8

which is called the polar form,of an equation of Ellne which does not

contain the pole. We note the: D = (pAJ) satisfies EquIllion (3) and that,

sinee .cogui - e) . cos(0 - G) / he°equation is valid for points whose

polar angle has measure 0 which is leas than w .

. Points are on a line L containing the pole if and only if they may ail

be described by the same or equivalent polar angles. Th4p/%the rel5resen-

tations of a line contadning the pole arc

or

L = ((r,e) : 0 k f nA y where k is real and n is an integer

L = ((r18) : q = + 180n0 wherle n Is an integer

. .

The appearance of the degree symbol in the second revcsentatdon does not fnean

that the right-hand member of the equation dogs not represent u simple real

ntImber; rather, it is a convention to indicate that the angle is measured in

degrees.?

al' ;9
S6
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EX:ample 4.

(a) .Find a polar forM of an equation of the line with inclination

135° and Whosedistance fram the pole is 2 .

(b) Find a polar equation for a line 6ontaining the pole with

zo .

inclination ov

Solution.

If the li.ne intersects the polar axis, the polar angle of the

xormal segment is .17 anethe polar form of an equation is

I.

r cos( - ii) =Ns.

If the line intersects tIle ray opposite to the polar axis, the

polar angle of th e. normal segment is , and the polar Nm Of

an eqgation is

r cos(6

.(b) The line.has polar equations

- or

= 2 .-

+ nits, whtre n is an integer,

6 = 600 + 180n0 0 Where n -1.13-an integer.

111r

If a line has already been represented in a rectangular coordinate

system as

I

L ((xly) ax + by .-, 0 a- b
2

t 0) ,

we may obtain a polar equation, in the related polar coordinate system simply

by substitution from the relations x = r Cos e and y = r sin 0 The

equation becomes

a r cos 0 + b r sin 0 + c = 0 whe e a
2

+ b / 0 .

In order to see how this equatfon is related to the usual polar form,

we recall that. ax'+ by 0 has the equivalent normal form

Xx + - p 0 , wlth tke correspondin coeffl,pients, proportional. Further-

more, = cos a and 4 cos f3, , where La and L. are the direction angles
1

of the normal segment. In the polar coorainate system which we have assumed

to relate the coordinates, we let ip be a polqr angle which contains the

normal segment of .L . Tusw = - a and cos 41) r, cos - . Furthermore,

80 87
AP.
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a

sin a = cos0 = If you have worked Exercise:7 oe Section 2-6, you should

already le aware that this isitrue; otherwise, you should justify nOw that

.it is Eto:

Let Vc + py -,p = 0 be the normal form of Equation (4). We substitute

for x' a ;!)c anelt., to obtain

or

, cos w r cos e + sin co r sin e - p =

r(cos 9 Cosa) + sin e sin a)

whiph is equivalent to

r cos(0 (1))1= P

= p

Example 2. Assume the Usual orientation.of thd polar axis apd find the

.polar form of.an equation of the line

(a) 2 ,units to the right of the pole and perpendicular to the polar

axis,

0 (b) 3 units above the pole and parallel to the polar axib;

(c) 1 unit to the left of theyole and perpendicular to the polar'

axis,

(d) 4 units below the pole and parallel to the polar axis.

(e) L = ((x,Y) : 'x Irj'y - 12 = 0) .

'Solution.

.(a) Since the,lehgth and polar angle of the normaj. seg ent are 2 and

0 respectively, the polar form of an equation is

(b) r cos(0 7 = 3 A 'simpler eqAtion is r sin 0
.

(c) r eos(0 - = 1 Another equation is r cos

k

(d) r Cos(0- 2700 ) 4 . Another equation is r sin e

(e) x 42")7Y - 12 . is equivalent to the normal form

1

and the corresponding.polar equation -
.

13-r cos 0 4 ---r sin e'L
2 2

r cos e

= 3 .

- 1 .

= -4 .

= 2 .
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or

(5 cos 9
2 .

sin 6)

If we let cos w and . sin w we obtain
2

for w We substitute in Equation (5) to obtain

or

NO

r(cos cos e + sin sin 0) =

'which rs fOrm.

r cos(1-1 - 0) =
3

r cos(0 11) =
3

1 I

as a suitable value

% INample 6. ASSUMe the.uaual relationship.lietween the polEr axis and the

V x. and y-axes and write an equivalent equation in rectangular coordinates fOr

I

igSolution ^ If We eJ cos(e -

r cos(e_.- a) - p .

obtain the equattion.

r cos Q cos c) r sin 6 sin w = p .

Since x r cos e and y = r sin e this is equivalent to

x cbs w w = P

Because cos w - A and sin w 4
'

Equation (6) is sometimes called -tie
al;

normal Vorm of an ovation ofa line.

r

Exercises 2-8

Writ6 each of ,the folhowing equations in normftl form:

=

8
y --x 2-

15

(p;) iPx - 5y = 0

(h) iy - 20

(i) 9X 4 15. 0.
4

(j) ,
12 5
y X

(k) - 1

(I) y.- 2 =



2. For Parts (a) and '(b) of Exercise ls draw the normal segment by.usirig

information,concerning a 0 , and p -which is supplied:byihe

evation. Then draw the line perpendicular to the norml segmerCt at

tits terminal point. Verify that this is the line represented,by'the

given-equation.

Without using rectangularecoo dinates write in polar form the equation

of a line

(a) Which is parallel to the polar axis and 4. units 64416 it,'

(b) which is perpendicular to the polar axis and 4 units to 'the

right ot the pole.

(c) throughthe pole with slope
se.

4

which contains the point (-3,135°) and has inclination 45
o

which contains the point (310) and has inclination 30° .

which contains the point (2,) and has inclination 45°

which is perpendicular to the line with equation r cOb(e- 2

and contains the point (4A)

(h) Which is parallel to tht line with e.quation r cos(0 - ='1
-

and contains the point (2,-135°) .

Transf,orm7reach of the,following equations to polar orni.

'(1) x - 4 =, 0

(b)

(c) x

-(d) 1) 4- y 4 2 = 0

(C) 3X Py 4 6 0

(f) x 4 4/7y_- 2 - 6

(g) 15y - 8x + ,

Let L ((x.,y), ?x 4 - g 0 where. A -4- and let

PI (xllyt) Sliow that the distance between F1 'and :I, is.

when

(a) P1 ''..on L . If

(b) P
1

Is on the swnc side of- L as'the orIl7in 0

than 0 to T.

(c) P
I

is on Che same side of L au 0.;

from L

111216

,

7 9 n

_

arc equ idis tant.'
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6. Find the distance between. and L

\Ca) P =:(628) ; L .'{(xoy. e lax -- + 26 = 0

(b) P (-3142) L ((x'sy)": 3x - 4y - 5 0)

6(c) = ; = tix,y) : y tx 73.

(d) = L = ((x;y)

(e) p'. (8111) ; L {,(x,y) 4 =JO' - a))

7. Find equations of tfie linea bisecting the angles:formed by the.lines

1,1.1 ((x,y) t:35c 5 .6). 'and 1,2.,.*UX0yr: 12x + 5y,- 13 .-- 03 .

Hint: _How is gm angle bisector dederibed AS a cus?

'Find ellUations of,the lines biecting the'aniil'es formed

(( x,y) )4y 4., *it 0). an.d 1.= Oke7,12( .12x
2

(See Exercit%7.):

9. Find equations of the 'lineslAsectifig thie angles( formed by the.lines

":

.[(x/y) Pi 4-.11,1
andf

L (04y) 7 - 0 2 + 2
,)

(See.:158:(cise 7f). 7

-5y

.10., Write the. ;T:zation r Cos 0 3.* CL.',1m*rectangix1ar cooli4ipates.

Write the equation X. y'. 0.1n polar .60ordinates.

4 2 2 vir
12. Write the equation x 4.y . 3v in polar cooroinates.

v.

13. Write tlie equation r eos0 in rectanu1ax coOrdinates.

Hint Multiply both:members of the'eqUeUPn .Xliepk*thatthe

pole is:in the graph:of...0e original eluaticn. EXpIain yhy yoti must

maktthis checkic
.

,

Write the'eq4ation, r =;2a cos 0 in rectangular coordinaift

(See EXerci;se.13.)

Transform to-rectangular

(a)-: '0 - .60°

(b) ,rn 0 +

(7) ,r

Sketch ,the loCas:

r



17. -(a) Transform x2 + 24x = 0 intp polar.Coordinates.

(b) Transform:A..- 5.cos 9 - 3-sin 0.40to rectangular coordinates.

(c) Transform r cage - 4. = 4 intP rectangular coordinates.

' t P
(d) TransTorm (x

2
+ y

2
y) = x + 4Thto. polar cotirdinates.

2-9-

It this Chapter yoU have eneountered many topics which Were already'

familia from various sources. pur hope is that by gather1ng'th9m together,

we haVe Ofered you not only the,chance'to refresh your Membry., but also new

insight into the coherence and ',application of these ideas.

We firdt considered the basis'for coordinates on a line and theX..
characterizalion of subsets,of a line in terms of coordinates. Next we

reviewed, with care the rectangular coordinate systeM in:th'e plane and various

analytic.representations of a linein.the plane.

Polar coordinates mayyell be a concept newto ou. Relations of both

,mathematical interest -.and physical importancf may ften be repredented most

dimply by 'eatuations in polar cobrdinates4
4. 4.14.

We have strèssed our freedom of chotee in introducing coordinate systems,.
.

'The, ease of oUr solution of protabms depends in part upon our foresight in

...4tablishing..a.4ralaework of: ref erlppe.

A.

In' problem solVing .6-le danger afways exists that wr might let the

algebra do oUr thinking for U.g. A geometric interpretatiOn will both'guj_de.

and control. ouripplication of algebraic techniquep. Throughout this chapter

we have,emphasized theroles of algebra' and geometry in the interpretation of

such conmptap4n-collelia, betweennesd, directiorLanit line, the measure.of

ankles, and the'measure.of distance between points' and lines.
M

In the next dhapter we.shall study vector ctors form in'themseIved

bridge between geometry and alAebra, for tiey are eometric objects

for wili*h algebraie?locrations are defined.

4

92

oto
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Review Exercises - Section 2-6 through Section 2-8

1. Find a paix of direction numbers, a pair of direction cosines, and a .

pair of,dirction angles for

(a) thp line containing the points (-3,7) and (4,-

24.
(b) a line with slope

25
r

(0) a ray emanating from {2 3) and containint L(-4,8) .

(d) the line L ((x,Y)

L
,

((x,y)
x 2

= ((x,y) Y =

((x,y) 51 +

L = t( y) y + 2.=

6x - 7y

.

'1 2 6 5)) ..
5

2. In each part belbw determine whetlier the three points are collinear.

(a) (11,13) (-4,1) ,.and (1,5) .

(b) (1,-2) , (-5,7) , and (6,-12) .

(d (23,17) , and (-17,-13)

(d) (0,-4) (-3,4, and (5,-11i .

.In Exercises 378 let A (-3 1) t 1 - (2,5) (4,1) .

3. :Find the distances: d(A)B) 0 d(A,C) , d(B,C) .

4.+IF

4. Write in Eeneral Xorm the equations of the Ihree lines AB , AC , BC .
-

5. Use*the results or Ekereise 4 to find the lengths of thi three altitudes

6ABC,.

6. Use-the results of-Exercises 3 and 5 to find the area of,N,BCA

7. In 6ABC , rind equations of

(a) the line containing the bisector of ZA .

(b) the line containing the bisecyr of Lp

(c) the line containing the bisector,of LC°.

In Exercises 8-11 let L1 , ((x,y) : 2x - Jy + 6 0) ,

L
2

((x,y) : 3x + 12 - 0) ,

0 and L, ,y) x - 4 , 0)
3

86 93



8. Find.the distance from

(a) A to each'of the lines
1 ;1'42

1

(h B io.each of the lines
f

.

.(c) C to each of the linea 'L
2

L
3

9. PlJid eqU'ations for the two-angle bisectors of the angles formed by

(a) Ll , L2 .

(b) L L.
1 /

L.

(c) t2 , L3 .

10. Find the diStances between the4aral1dr1ines:

(a) r11 as -abow, and = (elx,y) : 2x - 3y + 12 = 0)%

Op) L2 as above, and L5 . ((xly) 3x + 4y - 1 7.0) .

-4tc) L3 as above, and L6 = ((xly)- x - 2y + 10 = 0) .

11. Find two Points pa L1 whiph are Arts away fiom 12 .

-

- 4,12. 411nd the angle tween Li t(x,Y) 7-7771

y - 2
L, f(x,y) = 7_77)
e

13. SEw tha x - 3
L (x,Y)

: _2 3 - 23 is perpendicular to.

1,2,,A4(xtai
7:717'

a

14. Find the ahgles between L and A ---wdere L ocntains the points
140 1 2 1

and (-1 -1) , an'd 1i2 contains the points (-4,6) and (3,0) .

,

15'. 'Find the measure or the angle .iose'sides have pairs of dfrect1or costnes,

) and ( '( 3

157
r sp

16. Show that triangle ABC is a rit41it triangle, where A - ()
.B (-2 y) and,. C = (6,9)

I

A



17. nnd the normal form-of the equations

(a) 3x - 7y + 29 = 0

(b) y ;x + 58 .

.(c)

CO 3x - 7y =. 0 .

(e) 7 = 5x

18. Find the polar form of the equation of the line

(a) which intersects the polar axis at (2,0) and has inclination

(b) thich is perpendicular to the polar axis'at a point 4 uniA

from the pole On the ray oNposite to the polar axis.
ara

4,15) contains the pole and the point '(7,147°)

19. Transform to\rectangular Coordinates:

(a) r cos(0-- 4-t>.
4,0

(b) 3r sin - 4r cos e = 12

20. Transform/to polar coordinates:

x y
.(ta) = 1

8
= - 12

'Challenge Exercises

For each of t5cercises 14 write an eqliation to represent,all lines,

4

1. parallel to .3x - 4y + 10 = 0

2, perpendicular to 3 - hy +110.-

3. containing the origin,

4. containing the point (2,3
.

I
ill,

. -.0
.. !-

. .

5. cyclipining the poiht 1'(l,0) and parallel to line 3.41 Exercise 1

& having,61ope -3 . .
. .

. 11"4".
.

P
, 7. Prove analyt3cally that the.lines containing t50 bisectors of the anOes

formqd by any tWoZntersecting Idnes are perpendicular.
..

8895
a



e
8. .Prove: If' P

1 1,
y
1

) is not,' on.. L. f(xly):.ax by 4. ca... f(xly) = 0)

then f(X,y) = f(xl,yi) is an equation of a line parallel to L .

In EXerCises 9-13 let A. = (01(;) p B =-(1,10) , and C = (a,b) , where 'I) / 0 .

. . * .

..
. r

9. 1Nove that the lines-taltaining the altitudes.of triangles ABC are ,

\concurrent at apoint H . Find the coordinates of H .

1(11ove that the lines containini the medians of triangle ABC are con0

currpnt.at a point Find the coordinates of ,G
00.

11., Prove that the lines containing thelotSectors of the angles of triang1V

ABC are concurrent a't aspoint I Find the coordInatbs of point f ,

12. Prove that the perpendicular_bisectors of the sides of triangle ABC
,

are concurrent at a point E Find the coordinates of point E .

13. Prove that the pbints H y and. E. in Exercises 94 10, and 12

P011inear. Find an equation of the line containing them.

Afp

AV

4

7
89. *

1.
I A.

v

I 1
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Chapter .3

VECTORS Jpip THEIR APPLICATIONS

3-1. Why Study' /1"VectOrs"?
A

,p

The use of vectors is .becoming increasingly hmportant. For example, many

of the problems regarding space travel and ordinary air traSel on the eartfi

are solved by vector method's.
ip*

Vectors were created by the mathemapical phIsiciits William Ell. Hadgill
# 0

andiferMan Gresaman in about tbe middle of the nineteenth eenturYjelVeathe
dif f

many-Troblems involving forces and mOtion. Sinee that time vectora.have been

applied in mpny branches of'science, engineering, and mathematics. The work.', .

of Hamilton add Grassman was based on the earlier devel!Opmevtt of anar3rtic
t.

geometry by Rene Descartes and Pierre Fermat in the seventeenth century.

Vector methods and the bon-vector methods of analytic. geometry are bioti:

widely used in provingAgeometric theorems and they have become so tpterwoven

t it is at times impossible to separateothem. fact,4severbooks have

been lublished recently under tiitles such as "Analytic Geometry% A Vectqr
,.r

Approach", and courses in calcalus make extensive use of both,vector and non-
.

ctoi.methods interchange
'

ably ''This is one of the principal reasons for4in-.. -

'cludi4 tills chapter ip bur book--to give You en additional tool to apply

find interesting relations among geometric objects and to provi some genmeti?ck

theorems. An additional reason is the future need id sCientifit or engineer-4 .

ing 1411dies or in riigtheiaatics courses. (1, I.
. ,

lb understand what follows you should recall what,you learnedqn your
.

course in geometry.. If yoA have.ltudied'abodt vectors before, part of this

material will,serve as a review and you mfty be interested in comparing the two

'14.proaches to the subject. However,,no knoWedge of, vectors.is 'assumed.

*of
.3-2. Directed Line Segments and Vect

in Chapter 2 we encountered directed Agle legments, which possess loceth

t 1

directionand magnitude. A simple'example of this.geonetric concept is that

\t.

a

91' 9 7
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. of AL motion or aisplacement along a line. Let us say a lad-starts at a given

point andbmalka two miles.' We donit know much about 1315 trip until we are

told 4te direction in Which-be walks orithe point at Which he ends. A dis-
.

placementrcan then be.rePresenied in one qf two ways: \

.1,
ka) By a directed segment extending-a given distance in a given

direetion from a given point.

(b): By,a pair,of points, one identified as the sparting or initial

point the other as the ending or.terminal point.

The sy;bol.,./It is used to denote such a directed line segment Whose

initial point is A .and whose terminal point is B

DEFINITION. By tbsjmaFitude of the directed line bigent Ali: we

mean d(A1B) the'ledgth of the,associate4 segment AB .

.
4.0

We now turn our attention to the concePt of a vector, which is elesely

'related to the geometric content of a directed line segment. Vectors 1.4re-
.

I created by physicists to deal with conceptasuch.as force, acceleration,

fIdW of heat, and flOw of electricity.

TO understand this new concept, we need the folloWing definition:

DEiINITION. Directed line segments Will be considered equivalent if

and only if they

46(1) lie.on the same or parallel lines,

(21, have the same sense of direction, and

'(i) have the same ffiagnitude

For convenience, we shall use the term "parallel" in the sense of.statement

(1). The phrase "if and only'if" means that the statement and its converse

are both true. a

0

DEFINITION. The infinite set of diiected line segments eqUivalent

VP

. to 4ny given dire*ed'line.segment is cailed a 'vector.

To understand moire fUlly the eoneept,óf a yectQr let us recill an analdgy

from arithmetic. liere we have an infinite set of,equivalent fFedtions Which

1 2 3 11
represent the.same quantity; e.g. 1., ; 2 7. 0

0 10 22 '
Such a set,

is called a rational nuMber.

-r- 98
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It'is c...hon in many texts 6 use the word. vector to mean, not the whole
pi

set_of equivalent directed line'segments but any single meiber ofthat set.

When convenient, and when there is no ambiguilty we will follow this proceduie.
f

When we use the word vector in this way, and say thattvo.vectors bre equal,'

we mean they are members of Vie same set of equivalent directed-line seiMeSts.

2' 3
In the case of the representation of ra onal numbers, when we sa = we

mean thaf these two fractions represent t same rationej. number. We shall .

represent a vector by any of its members and've shall denote puch directed

lipe segments by lr

Each rational numbet. has a representative which la considered the

"simplest", and that is the member whose numerator and denominator have no

1
totmon factor. 'In the exaMple above, 7 is the simplest retpetentative of

the rational number.
a

In the tame wai, Wwill be convenient to have a "simplest"- representative
- 0

,fir each vector. For this purpose we.require gt 'reference point in space which

we shall call the origin. Any pOint in spaCe can serve as the origin, and (to

emphasize this freedom,,we state the following principle:

, co

I

6%
ORIGIN PRINCTFLE: Vectors may be related to any pdint ii;i space

s an origp.
_

T
t

.

.The usefulness.of this principle will become eVident when vectors Bre applied

- to the solution of problems.

After eri origin is selected in.space, each yector or equilfilent set of -

directed line segments) contains a unique member with this origin as its

initial.point. We shall call this meigber the origin-vector and it will serve

as the "simplest"hrepresentative of the vector. The symbol A will be the,

origin-vector representation for the vector t , B for 17 , as shown in

Figure 3-1. Note that to each point A of the plane there now corresponds a

unique origin-Vector A 8

A

P93
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Figure 3-1.
- -

It is important to note that we do Act .44ways wish tb usetheesi est'
,4

r.

representjitive. For example, in adding 4 and .- 0 we find it most cOnvenient

.41111

1 2 1
to use the member instead of 7, and 5 instead of ... Likevii*; in

* dealing with vectors, we shall frequently find it more convetient. jto Use a

representative of its tet other then the or1gin:.,vector-4.

Vectorp are very frequently.associated with real nuMbers. 'In.discussions

involving vectors, real numbers'will be referred to as'sCalars: The scalar
!"

whith is the length of ir Ndll be denoted by j and will be rpferredIto

salts magnitude or lirosolute value. Other examples of scalars are the measures

of angle, area, mass, ago. temperature. You will find it helpfak to compere
,

these with the examples Of' vectors given earlier.

.0

DEFINITIONS. Ariy origin corresponds to an object called the

zero vector and is denoted by 0 .

vector'of unit length is called a unit vectbr. Note that4
is the unit vedtor Along

a

Note.also that thrzero vector lias zero, Magnitude but no ;articular direction,

A Uritt !Vector exists in every directicm.
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1'
ftercises 3:2.

1. Draw a veCt9r froi (3,2) as.defined'in this chapter and indicate its
A

siMplest repraentptive.

t.

2. FOr the figures below Adicate the sets of equivalent directed line

Segments.-

B .D K J

is r's

3. Given the ve:rtices A , B , C and.D of a Rarallelogram. List ali" he

direcad line segments determised.by ordered pairsof these points.

A
1;1

*/
Which belong to the sane vector?

Figure A.BaUKR is a regular hexagon.

In the di
)a
gram! find three replace-.

dents.for It and to =Ye each

of these statements true:

B.

5. Show the simplestgePrebentatives of four different uniit vectors on

.plane with a rectangular coordinate tystem. Do the same on a plane with
. .

a

a polar coordinate system.

6. LIst five geOmetric or phySi.cal concepts not'listed in this section,

which can be represented by vectors.

1 01

01

I

ts



44p.

373

.*

3=3. Sum and.Di fference of Vectors. Scalar MUltiplication.

rs

k
TO get anything of either math+tical intereat or physical usefulness,

it is necessary to in;roduir operations on vectors. Since forces are con-

/.'Veniently represented by vectors, we May,consider the problem_of replaäing ,

'twp forces acting ai a point by,...Nsingle force calledthe resultant. A Dutdh

scientist, Simqa..41,evin (1548,1620) .experimfnted with this problem and dis-'

covered that the rtaultant force cOuld be represented by elle 'diagonal of a

parallelogram whose sides represented the original force.O.'

.

,

/

Thus a defiarei:ion of #ector addition is made which is.consiaZeni with

observations of the physical. world.

Figure 3-2

Before presenting such a definition, there,is an important4distinction

to make between the use of origin-vectOrs and other vectors. _You must be

aware of this distinction.

We 'have already agreed tila, the statement of the "Origin Principle", that

vectors may be re7a1ted to any point in space as ah origin. One reason.for'

statlng this principle is that it is more coriirenient to deal with origin-
- 00-

vectors wten we seek a geometric interpretation.

We are aboui to define operations ,with vectors and.prove severartheorels.

In order that the ueof origin-vectors will.not limit.the application of the

results we,state the following prinóiple:

'60

9RIGIN-VECTOR PRINCIPLE. The sum and difference of vectors and
4*.

the product of a vector by a scalar is equivalent to the sum,

difielience 2
and scalar product of their respective origin vectors.

There is one more-signifidapestatement to make.fn this regard. All

prbofs usIn'g origin-Vectors depend-in part upOn the fact thai all such veCtbrA

96192.
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#have a common initial point. The extension of such proofs to vectors in

genera can readily be made by choosing 'for any vectors those representatives

which have a common initial point.

kgIn other words, the ebraid relationships between vectors will hold in

general, but the geometric interpretation must be limited-to the geometric

conditio7 aSsumed in the developnent.

DEFINITION.

(1) Let 17 'and 11 be two non-zero Vectors not lying in

the sae line and with a common' initial point 6 .

st,

We define the vector sum of 15 and designated

by: 7+ to to be the unique vector with initial

point 0 and whose terminal point is the-vertex

opposite 0 in the parallelogram formed vithl
_..

and Q as sides.

'Alm AM
(2) If ir- and 4 have the same direction, P + Q , is

the vector yith the same direction, and with nitudez.',

equal to the sum'of the magnitudes of 1% and

,If 17 and 741 have opposite directions, 15+ Q is

.the vector with the same direction as the vector sof

larger magnitude, and with magnitude'equal to thp

absolute value of the difference of the two magnitudes.

( 3) For any vector 15 , + + = , where 75. -

denotes the zero 'vector.

0

Figure 3-3

- 97 103
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-V

In arithmetic onêusuai1 considers milltiplication as repeated addition

of the,same nu9her.. Fbr e e,- 3 X 2 = 2 + 2 + 2 .- An arogous dbfini-

tion is made for the multipli tion of a victor by 'a scalar:. LItius

0 3:11. = if I The lecofldbpart-of the 'abome definition alsO tells us that

+ X +X, is.a vector parallel\to A 4 with the same sertbe of dir:ection, and

a magnitude three4times as large\. Generalizing this idea one can state the .

following definition:

INEFINITION. Let be a-real number and any vector.

Then rP is defined by \
a

(1) If r > 0 I then if.' is the vector wiN( same ditetion

as and magniAlde r times the maritude 1 .

If r < 0 , then, iy fs.the vector with direction

opposite to. 7 and magnitude 11.1 .times the

Magnitude of IF .

IP (3) If r = p then rP = .

(4) If r -tarn

When r = -1 , rP = (-1)ri anaide denOte this:Testor by .the'symbol

The vector -P has the opposie sense of direetiin of p

magnrttde is shown ;a Fi.gure 3-4.

4

Flgure 3-4.

In accordance with dur earlier definitions, WV1 note
4

that if r / 0

715

but has the same

is always parallel to i;

It I.; now possible to define one kind of division of two vectors.

I oil, 98
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r
= k , a-s

if r and B
I \

'parallel,

We now otua also make the following dfinition:

DEFINITION. .r- IS means I + OS) . The guintity

is called the 'diffgrence oil- the two vectors lc' and *I .

Thus, in order to find thel d.1fference bf two,vectqrs, -A, and
)
've meraY

need toradd the negative of-the secgnd to the first-as shown in 1,:sigure

Figure

Figure 3-5 also shows that if - hes tll =7S +7!..

Now that we have.made the above definitfons we areein a position to

illustrate the distinction between the Use of drigin-vectors and other'vectors

referred tcl on p.98. For example, the sum of vectors t...and, 7 sin figure

3-6 le equivalent to hthe sum of their respective origin-vectors A and IT.

99
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Figure 3-6

It is not even nece s that vebtors %Lind I; havt the same initial

pOint. (pee Figure 3-7)

.

Figure 3-7

Pit.14+,E3= a4,1)
I.

MA

AA impo;kant application of the.abo4 principle is shown in Figure 3-8

wflei> the sum 9i\ and I; Can be found b15,- considering the equivalent of e
'writh its initial point coincident with the terminal'point of a . This method

cal be *plied to three or more Vbctors.r .
0

1:06.
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Floure..3 -8

. .

In apploring vect.or methods, physicists. and other scientists often consider
0

that they i'move around a diagram and., then equate the corresponding vector
sums. We could "move" frail'. A .'-to D direc:tlyt or from A through B and
C to p If the vectot- from A to D ir called t , then = + + c

.

'Likewise, one can gd froth A to C. Via titp routes 'with the result that

Exercises 3-3

1. Using the figure das *Oxen,
supply the missing vector

I,

dxpressiond. "
f .

(a) + r;
(b) ?

(c) A

Ca) D T. re-. find
(e)

.

A

.4 4'

-A!

Quadrilaterals OCUL OBCA

and 646 are parallelograms

I

V



In the figure; AN B 4C 0 and .
D are vertapt.f40( oir a pars..11elograi 4

"t

4
and determina the ibCt9ra indicated., ..111

d' AO x(a) Expreqs e d- 0. d. e - in
t

tern% of ar;c1
1

,

Express. "re in tirms of
.

(1.)\ .an,d

(ii) ir am A'
no -8. and icie

(iv) -AL and a-

(e) (i) What is the sins of d
0
and t

(W. What is the sisal of r,t,t, an&

3.. Draw, on paper the vegtors t
V

5nd lr as shown in the figure.

'Oonstrubt the v.ectors:

s. ea.

4

4. By a drawing, show that ).f a + b = c then b = Ch.

5. 0 B 0 and X are collinear Wilts. Find r such that

X = rB

I.

(a). X is the midpOint of C73 .

(b) B is the midpoint of OX

(c) 0 is the midpoint cif TX .

3
(d) is 7 'of the way from 0 to B .

1.

2(e) B is of the way from 0 td - X .

(r) 0
5is of the way frrom B to X .

6. i t= 1)id prove a 4- C = 0 .

7. If = 3' , what is 114AI 1-

8. Prove: if t,r 'And if r is a

102
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s a non-zero

:.

, .

veotot, .dnd- if ',La'

01b

10. The figiire is arvéstor, diagram'
-

f based Cinta idgillar hexagon.
;

(a) Write

. ynicA

Vector cluatiens:,.

s)ould-oO4ur to anyone-e
ia the el

;50 . 6

-Obvious b

.prOve.

assv

more yhich are dot

ui
*

mi

.3-3

= Ic 1.what can you agy about w

,

-

.

By usi itors, indicate .5 different paths.

could- moVe fr. 7,.(li2) to Q. = V1,6)
r

ri- Zi Itl does+ ir 7.,

(b) If .-saP --t = 0 ,

13. Prove r: +171 < 1./71

.12 (a)

does Aab ?
. _

dis0

14. Letting 1 inch represent

motion if a car travels 4.

assuming the car-travels in

Jo.

ih plahe.by whi6h'one

Cl'.

2 miles', find graphieally the resultant'

miles north- and then 5 miles zo4theast,

a plane.

15. Using the idea of resultant vector's and a scald of 1 inch-to

represent 2' miles per hbur, solve the following pA.oplem graphically.

river has a 3 mile:per hour current. A motor, boat moves directly
,)

across the river (perpendictilar to

Sliow fast and in Whatidirection would the

no current and the same power and heading

the.current) at 5 -Acules per hour:

boat be trlaveling if there were

were used in crossing,the

river?

16. Make a ve

o

drawing with a scale of 1

to solve the following problerm.

A bo0 is ticted on by two forces, -in and 5 ,

70°, with each other. The magnitude of -4 is 20 pounds and that of

t is 30 pounds. What is'the magnitude and direction,of tH
ee.

resultant force?

inch to.represent 10 pounds

which make an angle.of

%

I103 0.9
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3-
..

.

.

.

. : .

.

e--Z--.47.-.Shdw that if 1r ahd dte.distingt vectoro;then tk
-

llepAft thrOug**.terminalbo$nts oi

end I '2 and. similarly for 13b - .

^ -It_ ..
...

lo. a 2 2 c and' d are cdhsecutive vecteuk.sides of a qUadrir1ateralt
. . _ft 4

o' Prove that the.figurF is a Pareellelogiam if..And only if 17 + I .
, . , . .

i' ...01'_.
. .

.19: Pror that the sum of the siX,veciors.draw&frdmithe ce'nter....of a'regular
.

ft.

hexagon to Its Iertides is'thkzero vector. .
.._ - . ; .

.20. y weitrace the perimeter.of ampAyion*.ABCD ... PA ; and asalgn a vector
.

.a., b 1 c 2 d ood 2 p gortespondipg to each gide las we traverseAt2
Jia .1.16 ..lo /46 ...6 idb ' . '

show that.the vectdr oum 'a'+.1, + c.+ dd+ ... + p.:t.,,0 .- (It is'this Ilea
.

1

that physicists:have in4mind when they say.,.?tbe vector sul: around.67' ;. . .

closed eirtuit is zero." . i.. 1:

' I

*

Properties.of Vector Operatios.r
ewes.. 0 /1

We now\derive siverol impprtaht algebrair.propertieb of.the opera-Mon of
.5

veror addition. %

THBORM 3-1. (C6mmutative Property

4

lt .

V.
. This P011ows from the defiliition bfvrectbr

3-3.

- 1

with the helg of Flgure

Figure 3_3



a

(
(Associative' Property)

t Crt TI)

VD

(Fe+ 11) 4- P. .

Figure 3-9

V

Figure 3-9 suggests a proof using the various parallelograms:which
.

ippear. A much nicer proof will be tiven

TftEamm 3-31 (Additive Inverses)

For any vector lt, the equation

II

is satiefied by T= (-1) x

3-4

This follows tftmediately from the definition of addition of. 'vectors and

74..5
't

Next we prove a theorem concerned with multiplying vectors by real
.

numbers.

=OREN 3-4. AsSociative Property)

UsTP. r(sP)

Tt!is follows immediately.fromftHe definition of each member of the

equation.

.1.11
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Emrcises 3-4

. .
Eci: using the definition of subtractidn, and the commutative and faseocia-

.

/ the 1roperties, show, that

(a) -

(b) (f + = t-,

2. -Pray on paper the -figure showiiig.

and t. lecVe point X

sugh that t = p +

(a) if p = 1 and q =

(b) .if- 13 = and q =

1
(e) 1.f p = 0 *and q 7

.1 1
(d) if p = 7 and q = r

(e) ii p 'and q =

Can you make a conjecture about the values for. p and q for which X

'is on
,

3. (a) Show by a vector drawing that the subtraction of vectors, e.gy,

A - B , is not gammutatIve.

(b) Is,there a relation between the two differences, i.e. does

A - B = rat- 1) ? '

4. Prove Theorem 372.

5. Show that -CP +I) - - .

'6. Show that (-r,)11.,.- r(-P)

3-5, Characterization of the Points on a Line.

The.term "linear combinatioe was first mentioned in** ampter 2 in connec-

on with finding a point of division of a line segment. Now that we know how

o aad and subtract vectors andahole to multiply a vector by a scalar, we can

!combine these of)erations to create other vectors sUch as .2r- 3f, + 1

. and (1 - x)r+ xr To formalize this idea, we state the following

definition:

112
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DEFINITION. It' al 2 a2 ..,en:-are )1 vectors and xl 3(

.

., are
n

n scaAars,, the, vectOr x1t1 + x21 2,+ + x

\ said to be filinear-ccoMbination of,11 ,1r2

4

In orderato use, vectors to proye theorems in geometry we need'several

basic theowems. The first one Is concerned with exprestling any vector in the
,

plane as a.11near combination of other vectors in'the'same plane.
.

.

J
.

'

% .. .
di.-

.

.

MENEM 3-6. If 1. and I; eke coplanar and,non:parallel, then any ihird
. . .

....- P
.

vector -d-2 which lies in the plane
4
determined by- Tr and 1, 2 can be

-

expressed as a unique linear Combination th' lr and tw .

. ... , .

. .

...- . .
_, . ..

41 .
Given; _Coplanar and non-parallelvectors 1r and :V ; and c..

in.their plane. .

W.S

Prove: c = xagr i- y wherp x and y are scalars.

'Figure 3-10

Inasmuch as vestors t, la.nd t can be represented by their respe-

tive origin-vectors t, It, and tr with ternlinal 'points A , B ana- C 'as'.

shq-wn in Figure, 3-10, we need only prove that t= it . In this diagram

we have chosen x and y pOsitive although this restriction is not needed.

(1) -Draw a li- ne through. C parallel to the line containing if..

thetepoint of intersection of this line with the line containing

.107

13

D be,,

S.
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(g) Since .11' ia flan/Ilea to, I , it is ;Nate scalar imAtiple of

Thus, for 'some, unique x '15 = xt
- ( 3 ) 4 Similarly, the vector it, along the line containing fk, tis a scalar'

. .

., niultiple of it . Thuts, some uniqUe y , f . ylt .. -

-
Tilen C.= 15 4- = Ar+-yit ,which shows is a unique qinear/combination

of r arta We have the equicrilent. tatement:

c is a linear combinetion of e: and t .4
a

- r
.... Oft A A .

. _

We note that if a is parallel to- - a. or ..t. 0 then e is a scalar multiple
.. ; .

of either a or b

` f
TWAREK 3-6. (Distributiv,Propertie

1.

(r + s) , rf +

. Figure 3-11

Proof, of Part it r(P +1) r + .

In this proof, we assume it and t ion distinct lines witit. r > 0

(1). In Figure 3-11, r= r , rt

Therefore : r = 11.1

I 4
108



(2)

rci 2q

(3) nti d(cto) d(A,D)

Ill'= d(00A)

= d(0,P) = d(Q,C)
-

I ..

)111-. d(04Q) .

, .

ire d(A0D) d(Q,J,C)
(4 ) polabinng steps (2) and vad therqortf .-.1.

d(04) =
,

, 4
t(uAD dpga .

(5 ji(o,Din)r (1(0, c)

rItil irti

.

(Of Once the veetpv are in the sime directioti7 'fire = re.

(7) t Jr +lt or

rte. 1-4 + rlf and since = + er ,

r(t + = + rtr

Let us conside6 the special cases where the non-zero liectors it'd ir

are collinear.

denses.

They are ihen parallel and have either the same or oppceite

If they have the same sense of direction, then

\(1.11, By definition, + 41. has the same sense of dp.ebtion as, I an
.,

and has 'magnitude + MI .

t2) If r >,0 , then rc.P"+ lp ado has the Seale sense of directiop as

+ , , and. , and has magnitude/ r( + MI ) 2.111 0- tit by

definiti6n,and the distributije

In the s ame way, Rince r > 0 , + 4 has the same sense of direction

aeikr, 0 4 0 7 , and /T 1 and has magnitude 141 + .1r 1 r r

Since the yectors 1( 1 + 74) and + rtt have the same magnitude and

the atime ,sense of direction, \hey are equal, as was to be shown.

The case in 'which haie opposite direction is treated in a

similar fashion and the proof, is.left for class discussion.

(4 )

The proof of the zases where r <.0 is also left far .classdissussion.

The procif ,of the sedond part of the distributive law.*(r + s + sir is

left aia!an exercise. .
.

*VV
.
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3-5. %, .

I.

THEOREM LI. If lt* arid .are distinct vectors not l.ng in the

same lines. th4n the Vegtor p4 4-41 v1l tehniiate
,

line determined.by the. terminal points of r anti 1 i-g- and.
4

only *if p + 9. = 1 .
.

#r

Proof

(1) C is, collinear with A and B if and Only. if C = A or. , ...

(2) J-To. 11 5i5 if and only if there exists a q / 0 such that

or .8 '= ib 4 qg - ql

or 6 + (1 q

or pt qt3 where p q

We note that if q = .

ol.

The statement tb= + (1 - is a vector forin of an equation of the

line through A 4and B . 4

, °Each particular choice of p (and consequently of q) referred to in the

Theorem 3-7 determines a vector to a point on the line 1n Figure 3-12.
,

We can therefore describe subsets of the line r by,placin conditions on the

scalars p .and q

The line V' = IX ; qtib ,:there p + q =, 1)

The segment AB = (X = pr+ or where p + q, = 1 and p > q > 0)

The ray g = (X : =4+,4. wh:ere p + 1 and q 0)

The ray = (X : + 4131' where p + q = 1 and p > 0)



I.

The ray opposite t = Cx : = IX+ ri 'where

The interior of

1).trihe2miore

(1) if, 1

$

,is also a coordinatq in,oneof the coordinate spftens" far tholt line. When

p = 0', we Otain ; when p = 1 o'Ve Atain X. The value of p WhiCh

dapermines d vector r14.-33his vec!tOr repre sentation of the line ri is also

as, interior point

51. '516 =4pit + wherelp +
t.

. .

cift ore p

KS .1

=

re

p + q = 1 and q < 0)

q 1 and p>0,4>0

p > 0 add' 5 o then

(ii) if 2 = p + ciVwhere p + q = 1 -and either p, or I is zeroy.-N
4

then X is an endpoint of RI : and
/

(iii) if' 2 . 4. 40 %there p.+ q . 1 and either < 0 q
then. X is a point of the line exteTibr to A2 .' 9,.

4., - i . . % . .

observe that in'the:vector representation .plt +.(1 - p) ll the scalar'
%. .

t a.

the coordinate of the point X in the 000rdinate system for the line with

oriin B and unit-point. A c

TOOREM

gr int 4. 4
m + n

to points A

AO -Jr
#

.

- divides AB in the rateio n:11 , tile*

where r AndI
are' origin-vectors

, 1B P respectively:

*(1 ) Referring to Figure 3-1

n
kthe vectors

In
13. g(2)
b -

Figure 343. ,

lie on the

n. (given).
m .

same line)..

in 117
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1.

. (3) -g) = nLb - 11)

( mia; -

)
,

(6)4 (ra + n); + it - a + ,

t + m + +424

- 4

(7) .In terms of origin-vectors, we may then write:

int + nt- 1- ....."hi

o in r . n
, I. = . in 1- n .- /17-77ii m + n

Tote: If P
.

the midpoint,, th'en, P. ;.-(it + to

EXerciseS 3-5

.1. Given veetors , 11. , an4 .6 with their terminal pants

...etc.< a straieht line, so that tr. + p + q = 1

(a)" What happens if lr or 1r is the zero vector?

What are p andL sk if t ?

(c) at can we say about tr if

(i) p > 0 an4 q > 0 ?

(ii) g < b

P 0 ?

;

(d) Construct figures to illustrate 'the casee:

2. (a)

4

0.

B and C

1
(1) = C 1 = .

(ii) P = 7 $ q '..7 .

1 5'(iii) D = . Li = .

3 1 ,
(iv) P =

gli 7

,

If the ratio of the division of a line segmeni is given by

n:m . 2:3 find n and m so that n + m - 1 .

(b) Same as iart (a) for m:n = 5:-3

Mhke a vector drawing to illustrate Theorem 3-5 when ,

x = 2 , y = 3

x 4--2 , y = .

4 Prove Thecrem 3-6, Part 2. 118
112
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3-6

3-6, Components
-

We have used -axtensively the c&respondence betwiten points in'the plane

and vectors. It is fruitful to describe this corresKndencs in another waY. p t
using the rectOngular(Coordlnates of s point. To esch Ordered pe.ir of real.
numbers' (a,b) 4 ttiere corresponds's uhique vector eManSting from 0 and

\c.terminating in that point and thus'we ma.lce.f.he followiAg definition.

sym1;o1 fast)] denotes'the origifi-vector to

O
point (ab2 . The number s. is called the x-component of

the vector and the nUlber b the t.component of the Itectar.

.
N.

We now describe the operationd involving vectorsi'n terms a tomponents.

TEEORI2.4 32. If (a,b1 and l'-, (c,d]

it + = + c b + d]

4

(a+c,b+d)

L.

4 Figure 3-14

.
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3-6

Proof. The parallelogram in Figure 3-14 is constructed 'according to

t.

the de'inition of.addition of vectors.

Since AOMY AXRF

The vertex P oppasi-te 0. 1.'s thrtheterminal point of' re -i- If

d(X,R) = d(S,N)i= c and

po4nt fa + c ,bb + d) and this vertexia

the vectors have the same or 4pos te direc-
,

tions, the.licof follows immediately from the definition of.vectload tioe.

If' r. is the zero vector [0,0] then

latP
.

i0J0-1. + [a,b] = [a 4- 0 p Wit+ 0],.

TREOREM 3-10.. :If = [a,b9 and r is a real number., then: rf= [ratrb]

. The proof is left as an exercise.

THEOREM 3-11., We prove, using components, a theorem learned earlier: Two

non-zero'vectors and I! lie in the sane line through the origin,

if and only-if f='/I for some real number r

..4
Proof. If = [ail)] and 3f= fra,rb] then It and'

46`
lie in the

A

line ay bx . Conversely, if / =. [a,bj and if r.li'es in 'the iine whlch

contains , then the coMponents o f MUst satisfy tfie equation. ay . bx

Hence r= [ra rb] for some real number r

,

The vectoi [1,0] is indicated.by the letter i and [0,1] by j .

and j vectors could be written as 1' and_ but, in accordance with

common usage, we sheal USQ the simpler notation. They represent the unit

vectors along the horizontal and vertical axed respectively.

If A - (a1,a2) , the origin-vector A may be written as ollows:

- fa
1,
a
2

]

Note that a
1

and a

[0,E0 = a1[1,0] + a2[0,l] a
1
i + sot,

A
are the components of, A ; ali and a

2
j are

The

called

the component vectors of -Ab . We observe in Figure 3-15 that any origin-vector
.0

can be written uniquely as the'sum of its component vgctors. The magnitude of

. / 2A is ya, + a

121)
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ita

.

The use

seen in

,

4,

A, vX,
A 05

).

O ,
a

1-
1 ,

IP.:

p

Figure 3-ib.547-
P.

#

Of components lelas to5a st4ple artt.h metic uf vectors,

the following sectAips.

.

an& f=s1,-1,.5)

in terms.of'lt and 1r .

36

Example 1. Given 2 [2,3]

and'

.
' We must find scalars r

4,-2] = f2r,3r1 + f-s15s) = (2r

Since ihe components of a

_

s s4c11 that

s 3r + 581

given

2r -

S.

1:6

-

ae wAl be

r5 7r[2,3] + s[-1,5] 1.
4

origin-vectv4tre tunique,

-23r + 5s

28 .16 -. 18'We find thqt! r . = ; hence z = 7[2,3]

I

We can form vector descriptions of lines and thelir
.1

we

16 [-1 5] .,

ponents.

have:

"

Hence

subsets using CQM..-

pcample 2. Find the vect6r reibresentation, in terms of a single parameter

for Ag. where 1:. [3,4) and Ir. [-2,3]

Solution. Let 1r be the' origin-vector

(1) it = r+ (1-r)7

= r[3,4) + (1 r)[-2,3]

= [3r,41-] + (-2

(2) Thus AB .=

+ , 3 - 31']

[-2 + 5r , 3 +

115

any p6int P on If";

(Theorem 3-7)

4,



r
4A

4.

E*almble 3. Findo._using Components a vector rspresentation of n where -

A....019 and IB 1=4.4?) .0-
r, .

. -. I .." ..

q#

..._seolution.
it 1,2' [3,4 ] /4 and 11 L.- [1,2,3] . As. in Example 2, any point

.

P en

AB Om be represented by r .4 '14 .

= fps _or + (1 r)15-1

Nowever ire must place a restriction on 'r .00 that
. .4

This côndition wi'll be met if

when r . 0 ..
_

The Cdhplete Solutioh
,

A

will lit 9rf1or. on IEE
. .

0 - r < I since- R. A- lawn r .=. l and P=B

- EXample 4. Pik, usitig

A . (3,4) and 'B = (v2,3) .

nents

Q < <

4

r

a Vector repreientation of BA where

Solution. This problemr-differs frii EXample 3 in only one' respect. Ilk

must now place a restriction on r sq that R. will lie only on . This

condition will be met if r > 0 since P'= B when r = 0 and F lies 'oil

the ray emanating Prolix B and containing A when r > 0 .. The tomplete solu-
tion is:

-sr -sr
3 + r] r

EXample 5. Find the vector reprpsentatiOn of the trisectionpoints 0

M. where 1 . [3,4] and vr=: I-2,31 .

, ,

Solution. Referring to Theorem 3-8,e have

Jb2thABP=
. + n

where P hivides the segment in the ratio, n:m .

O There are two,poiz.ps of triseation;one where n:m = 1:2 ; the other utere

n:m = 2;1 . We shall do the first part. V

0,

6

fr_ 2f3t41 1[..20) lr " n, =
111

= + 71f-r
; 3

122
116 40
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.1. Find the domponentsjof

(a) [3,21,t [44]

(4)

.(c) 4[5.1.61

(d) -4[5,6].

(a). -1[5,6]-,-

- [5,6]

(0 3[4,1]

(h)- 3[44j - 2(-1033

\ftercises 3-6

'2 r= p I = [ 1 [2,3] find the components of

(a) ,2r + 31t zr.
(d) 5(t- te),± 3(te-

(b.) 1- + 3e41. (e) 3(t + - + 2(r - +%t).

(c) 2(r+ r) - _ co% 5(e_ It+ I)._ 31+

WhEite is the x component Of i 1*, of 3 I

4. Firld the magnitude of the following vectors:it. ,

+ j

3i : 4j .

ai + bj .

(cos (9)i +.(sin e)j .

3-6

Vector r is drawn from A (4 2) to B = (5,: . Write its origin-

vectOr it in terms of i and j

6. EXpress the zero vector- 6, in terms of two distinct non-collinear vectoks

lr and 1! lying in the same plane..

' 7. In terms of i and j , describe the vector representd by the arrow

extending from 0 to the midpoint of the segment joining (2,5) and,

C.

In texas of i -and j d cribe-

(a) the unit vector making an angle of 30
0
with the x-axis.

(b) the unit vector making an angle.of -30
0

with the x-axis.

(0' the unit vector having the same direkion as 41 - .

117' a1 9e)

4



3-6

9. Find x and y'.so that:

(a) 3113-,-1) + yr3,11 (5,61 .

-(P) x[3,2] + Y[.0] [1,2] .

(c) xf3,2] + Yri2,3) = [5,6) .

(d) x[3,2] y[6,4].= [-3,-2] linfinitely many solutiorfs. VitlY

10. Represent an arbitrary Vector fa,b) as a linear combination of

, (a) [1,0] and [0111-i,

(b) [1;1] and (-1,1];
' .

1 . 1 ] e'ind
-1,0]

4. FhysiCal f6rcea posseas both Magnitude and,direction and therefore may.be.

represented by vectors. In physics problems it is ofteil convvnient to

use x-components and y-components to represent 'the horiiontal and

vertical components of a forte.

Suppose a sled is being pulled:along level ground by a cord making an

angle of 30° with the ground. The tension (magnitude o4 the pulling

fo46é) in the cord is 50, Pounds. What is the component of the force

s

to the ground; and what is the component of the force perpen-

'dicular to the ground?

(Hint: With the force vector emanating

.fromthe origin, the horifontal vector ry;

will be (111 cos 30°,0) and the

vertical vector will be (0, T sin 30°1

12. No forces act.simultaneously at the same point. The first pas a

magnitudeof 20 pounds, and direction 37° above the horizontal and

towvd the right. The other.force has a magnitude of 30 younds and

direction 30° below the'horizontal and toward the right. Find the

vector which represents the resultant of thesetwo forcee.

13. Refer to the forces 'of Exercise 12.

(a) At What angle must the second fbrCe act if the,resultant acts

horizontally towaxd.tte right? 4

.(b) At what angle must the second force act if the resultant acts

vertically?

124
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14. Suppose three forces act simultaneously at the 'oame point. . (It can be-

seen from the commutative and aseociative properties. <!iddition for

vectorppthat there is but one resultant for all three, no matter which

.two are taken first.) Find the resultant of these three forces: 20

pounds pcting due west, 30 poundsadting-northwest, and 4o pound's

acting due south.- "

4
.

15. If two forces have the same magLitide but act in Opposite directions,

they are said to-be in.equilibrium and each is called the equilibrant
,

of the other.

(a) 1:1id the magnitude and direction of the equilibranf of the ;

tesultant of two forces, one pulling due noAh with a magnitude

of 20 pounds and the other pulling southeast with a magnitude

of 30 pounds.

(b) If a third force of lor pounds acting due`east is,added, find the

force which will provide equilibriui for the whole system.

16. A picture weigiling ten pounds is suspended evenly by.a wire going over
e'

a-hook on the wall. If the two ends of the wire make an angle cif 140 0

at the hook, find the tension In the wireih (See Exercise 11 for the U.se

of "tension".)

17. Prove Theotems 3-1, 3-2, and 3-6 using componentt.

18. Prove Theorem 3-10.
A

19... Find vector representations, in terms of a single parameter for the sets

described below:

(a) V. where A - [2,3] and 13b = [-4,51

(b) itr where -4 - [1,37 and P"= [3;9]

(c) le where A. , [4,-7] and P [4,2]

Where - [2] and It [3]

) where = 1-3,2] and It = [1;1']

(f) 7A1-13 where 7t- [1] and

(g) n' where r = [3,4] and it = (-2,31
eft

(h) Alr where r ,.[1,-P] and E [-3,P]

(0 Ayr Where - [2] and It = [1]

(j) Are where A', [3,41 and t-2,3]

(4k) M where. r- [3,4] and "rd:,.[-2,3].

(1) Tjt.where r= [1] and It, [2]

(M) .The ray opposite to Ag where r, [3,4] and

(n) The interior 'of segment where 1.- [-3,2] and 1r, r1,_21

tit
119
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20. Find the vector representations of the midpoints and trisection points bf

the following line segments:

(a) .ris where A . 10,0] and B = (6,12)
/

(b) n where A = 1-3;2] and B t100..11]

(a) rg where A = ralva21 and B 1b1,b2f

21. Find ehe vector representations of the points which divide the directed

segment (P,Q) in the ratio where:
0

(a)' P = [4,6] , Q = [ -1,1i]
, r 2
anu

t

(b) F = [4] l Q ,

P -

s

,

:IL 3.V

r=
1

. .

, s

(d). F Q = [9,N, and r = 51

tr 3 0 Q = rsil and
107r3 p I 8

(r) P . [4] y Q =*(11) , and

4

tN

1 6
120
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3.7. Inner'Product.

. Our algebra of veCtors does not yet include multiplication of one vectof:,

by a40ther. In order to make.a,definition which will have significant

consequences, we inVdstigatc the angle between two vectors.

DEFINITION.

Then hy the

whoSa. sides

Let X and Y be any two non-zero vectors.

angle between "it and Y we mean the angle
.&

contain X and Y . This angle has a unique

degree measure between 00 and 1800 (inclusive):

Figure 3-.16

Let e denote the angle between, lr ana

applied to triangle OXY , enables us to write

x
(x1,x.)

The law of co ine,S

(d(x,y) If12 + 1n2 21rI cos

The term IXIIY1 cos e has significant phystcal applications.which lead us to

a useful vector concept. One such applicatip deals with

applying a force thi-ough a giveh distance. Since we must

tion and magnitude of both the force which is applied and

takes place, it is customary to represent them by vectors

s.= I:41 is the distance.

121
127

the work done in

consider the direc-
,

the motion which

IP and t , wher'e
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Fligure 3-17

In Figure 3-17, an object at 0 ,ts moved a diptance s bY,..a force .1 w

This.force is applied to-the object along a straight line and in the same

direction as that line so that ali of the force acts in the direction of

motion. -

On the otherhand,' if t1.4 force is applied at an angle 0,1 aw shown in

Figure.3-18, only thatvector component of the force, ti p which'produces

the motton is.effective 1.1%ierforming the work done,

Figure-3-18

,In Figure 3-18, d(0,0 = = so

Work = s coe e 0111.1 co. e .
X

4Sb

... -
lierifilXiON. Let X and Y be any non-zero vectors. Then

AI% Alb

the inner product, X .Y 0 of the two vectors is the real

number

17.1 It' cos e

where i the magnitude of X 0 M Is the magnitude

of Y 0 and 0. is the angle between, X and ,Y . If

either X or I? is the zero vector, 1 is defined to

be zero.

malt. amilb
M

The inner product X.-Y is usually read "vector

4

X dot 'yee.tor
yl,

is therefore sometimes callea the "dot product": Notice that the inner

product is an operation that.assigns to each pair of vectors a real number

rather than a vector. The operation,ie obviously comMutative.

122
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In view of the abolfe

t t It .

"

definitiomi Wor = . Also

Example. Evaluate it Y if =

e . 450 1 (c) e . 96° 1 (d) 0 =

Solution.

(a) 'X Y = 2 3 cos

(b). . I. 2 3 dos

-(c) 2I s: 2. 3' co's

(8) X . = 2 3 cos

The inner product has

perpendicularity,.

-{ 3-7

s =

X = 3 a-,nd "(a) 0 =

= 2- 3 1 = 6
r-= 2 3 iY?

2

900 = 2 3 0 = 0

180° 2. 3 (-1) = ,r6

maity applications . One of the416, is a est for.

TIM:OREM 3-12,. If X A,a,

dicular if and only if

am non-zero vectors, then they a.re terpenr

x.Y=O .

Proof. According, to the definition of .inner product

This product of real

z6ro. Since X iltnd

ntt zero. Therefore

the case if and only

T.1. III :III cos 0 .

numbereis zero if and only tf one of

are non-zero vectors, th'e numbers

the product is zero if' and Only if'

if X and I are perpendicular.

its factors is

1X1 and 61 are

cos e = 0 which is

-The following theorem supplies a usetul formula-for the inner product of'

vectors.

TIIDOREM 3-13. If. 3r x1,x2j and -f = y

then

s.
7' xlyl

123
129
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Proof. From the law of cosines and the drstance formula We can how

writ; (see Figuxe 3-16) A

iiii 008,9 1112
1.442

(21(x1y)

2

2

\12.2 2 2 . 2 2
Yl. * Y2 (xl )- (x2 12)7)

2x2Y2) '371 ' x212 -

Example 1. If r -6 ] and', t = 13,41 s, show that t and 41

perpendicular.

Solution. lt 1h= 8 ; 3 4- (4). 4 . 24 - 24 =66 .

Since Jr iiina It are non-lero vectors, Theorem 3-12 show that they, are

perpendieu

.Example 2. Find 'the angle between.the 'lectors 1.= (4,3] .and lt=

Solution.

4

Figure 3:19

A
4,3)

f = IX1 rgl cos 19

It = (4)(-2) (3)(2) = -2

-= 5 = 2,17

r'lr -2 = -
IT! rill 10,7 -Lu

0 .1.. 98° I

We shall find further application for the formula

I 'A
cos 9 = iiri

124
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.111*

The Aug* Between Wt Lines. An application ce this formula tan le made

to find the angles formed, by two lines with equations in'rctangular form..

Suppose the lines are Li and L2.with respective equations

aik t = 0 and a2x+b2y+d2O.=

. .

In Chapter 2 we learned,that the respectiVe normaia' k and N
2
"her

I ,

direction numbezp (a1,131) and (a27h2 ) . We may take these as-siectorccm-

ponents pf vectors along N1 and Ng From the'diagram, L. ind L.0 have
7

dell"

equal measure since each is'the complement of Ltx hence,Ife may find e

the,measure of the angle between L1 and L2 by finding 0 the'measure of
r

the angle between their normals. Therefore

COO e cos 0
[a],b1] [a2,,b21 a1a2 + b1b2

i[a11101]1 Ifa b 11 4 2
1

2 4 2"
This is the same formUla we found in Chapter 2,by another approach.

Example,. Find -Vie angles fvmed by the fines with equations ,.

3x + 4y 4- 5 7 0 and 5x + 9 . 0 .

4
. .

Solution. Direction numbers for the normals to these lines are

and (5,12 ); therefore,

. [3,4)45,123 15 # 63 63
cos e 7:75 '651[3,4)11[5,12] L2 22

+ 42 + 12

cos e Z .969 ana e 0 14°

. The angles formed have peasure 114° and 166°

125 131
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Enrcises 3-7

1. 'If t = [1,0] and j = [0,1] 1 finn

Find the angle between

. Givn

(e) j). (i

(f) (21. +.3.1) - 5i)
(g) (ai+ bil) -1. di)

[4 3] , find:

(f) (g 3Z) COI 3-t)

(g) (31 + 5t) (31 2t)

(h)- (r- + -6)

(i) (21 + (r5
(i) P.-1+114+-66

./

te and if pti = 2 1
1 = 3 Eind

(e) -4

(f) 5

(g) 6

(114 -6

(a) A = 4i - 3j find 1112 :

(b) B = 121 + 5j ffnd

A 4
5: If X . 3i + 4j , determine w so that Y is perpendicular to 7,

10,

if Y is

(a) wi + 4j

(b) wi - 4j

() 4i wj

(a) wi - 3J

e) \'Find an origin-vector in component form which is perpendicular to
a
X and four times aa long. (two answers)-

A a
6. Given A = 21 - j and B = 3i + 6j as sides Of 6040B ; what kind of

a triangle 1s 40,0B ? Find the third side c in'terms of lr and Ir.

Find 'C , the origin-vector of "Cr in terms of its unit vectors.

Aim

7. Let A= 21 3j B = -21-+.j . Find
4.

(a). the angle between A and 1Z' .

(b) the work done by T1 considei-ed.as a fo4ce vectOr in moving a

particle fran the origin .6o S = (2,0 along the 2EI-axis.
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A. A sled is puilled distance of4s ft. by aforce of f lbs., where 1

F represents.the force which makes an angle oi 8' with the horizontal.
t

Findthe work alone if

(a) s . 100 tt., f .-10 lbs., 8 = 200 .

(b) s 1000 ft., f.. 10 lbs; e . 300 .

9. In Problem (8), hoW far can the sled be dragged if tbr number of,avaiL.

able foot Pounds of work is 1000 and if

'(a) f = 100 e 200

f.. 100 lbs., = .89°

10. Let A =. (cos.8)i + (sin 8)j and

B = (cos )i +-(sin 4)j

Draw these vectors in the xy-plele.

(a) Find A B , 1AI IBI

kb) Use those results to provethat

cos(c0 e) = coil cos 0 + sin 0 sin e .

X. Y
11. Prove: -k < 1 .

IXIIYI

12. Comment on the following: there is an associative law for vector addl.-

tion: (76k-+7) + jC7. 17+ (.; 4- . Therefore, there maY be an associa,

. tive law for inner products: A- B. C) = (A. B). C

%No

3-8. Laws and Applications-of the Inner (Dot) Product.

A usefUl fact about inn#r products is that they have some of the

algebraic, properties.of products of nuMbvs. The following theorem gws two

Such properties. 11111war.t.

MORIN 3-14. If X.,Y,Z are any vectors then

(a) 7. 4- '2) 7.-F
('b) (tre) t(t. )=(5) . (ti)

Part (b) states "a scalarimultiple of a dot product.can be

attached to either vector factor."
6
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(a)

(h)

Proof..1111..11.

-
Let X = ,[xlsx21 [z

1.°z2
. Then

(t+.21) = [zipx21- [yi zi s * z;]

= x2(12 z2)

= xlyi + x212 + xizi x2s2

. +

(if) .12 (tx1,tx2] 21

tx15,1 tx22

= x2y2)

= tot-b .

. .

A4

°Drollery.. X. (aY + bZ) = ea. 1) b(X

The proofs of this corollary and the last part of Theorem 3-14 axe left

as exercises.

We may now use the inner product to prove theorem* in gelmetry which

involve perpendicularity.

&ample 1. Show that the diagonals of a rhombus are perpendicular.

Solution. Choose,the origin as one yertex of thel-hombub. The two

'adjacent sides can be represented by the veCtors A and 1;' with 1T1 . IBI .

13

Figure 3-20

Thus one 'diagonal is represented by It + It and the other diagonal is

parallel to T- 1; . TO test for perpendiCularity we calcul the inner

product of these two vectors, using Theorem 3-14.
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Aw Ale ,..111.

A +BI.B
Aft rm.

A.A +B.A - AB. B.B

= ir12

.But IAI = so that the inner prodtictis ze and hence the diagonals

are perpendicular. .

EXample 2. Prove that the altitudes of a triangle axe C nt.

t) -43

Figure 3-21

Proof. Refer to Figure 3-21: Let Tir and
.606

Then BE and CF must intersect at some point

some point D We- mUst prove

(1) -70.. )7. -71. b. = 0 ; (Why?)

thus b .'a = b c

(2) Sinilar4, c = c c a = 0

3-8

T, be altitudes of bABC

H . AR intersects BC at

thus

(3)
1.3.:

= a . (Why?)

ca=c.b.

(11-)

(5 )

c .a-ba= 0.

0 and a (c -

(6) jence AD BC and,the three altitudes are concurrent.

The inner product can be used to derive another result. Let

x = x
1'
x
2

] be a non-zero vector. Then k' [-xel] is also a zero

vector and we have 13 r
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3-8

[xi,x2] (.422xl] -x,x2 i1x2

Nenceby Theorem 3-12, it and 101 re perpendicular and the angle betWeen

the vectors is 900

calculate

%Op

Now let Y = 1y
1
,y
2

be law non-zero rector. We now

1.

x'
(xa,x,

Figure 3 - 22

4

To 'do so weMlist determine the angle betWeen the vectors XI and 7Y7.

r4lationshic of,this angte to angle 0 is not always the same. In

Figure 3-22 the 4gle 0' between R= and It is 360°'- (90° +. .

If It were near' thd positiVe side of the y-axis, the angle 0 would be

90° + 0 . If werb between X and X' ) the angle 0' would be

90° - 6 . f were near the jlegative side of the y-axis the angle

would be 8 - Therefore; we have

COS

cos [3602 - (90

cos (90° t e ) ,

cos (90° - e )

or.cos ( 6 - 900) ,

.Therefore, in aw rase, stnce X: = -x x
1
). I. + .aw

X' .Y =
2' x 11 y y2), = x1y2 - x2y1 = IXIIY1 cos 0' = IxWfl sin e.-.

e ))

sin 6 .

136,
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3-9

But from the figure, weHsee that fil sin 9 is the length of the SltAude h
'41141.

drawn frOm X to line QY in AMY. Thus the area X 'of WXY. is given by

However, since 71 sin e p

K 17: 11712

v3,90 Resolution of Vectors.

In the first discussionAn vector compOnents(Section 3-6), it was noted.

that the veCtor IF. [ash] had a,as its x-coniponent and- b as ite.y-Com-
r

K 11-71h

21 1

1
s n e = .ffx1y2 - x2y11

patient.

e

As before,.we have the

4 .

guie ,3-23

-

onent vectors ai . A 0. and, bj .

We now Irish to extend.this concept af aodtponent .1.reltors. Olprisider any

non-ze rigin-vectors X 'and Y to points X and 1F .respectiv.ely. Let
.044. 114

the,perpendicular from X :to OY meet OY in pdtt P aeindicated,tn

Figure 3-21. Thet the vectors m and IT corredponding to OP and PX are
Air

called the component vectors of X with respect to y This idea is not

restricted to origin-vectors,

Figure 3-24
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This extension of the concepI of components of vectors-ia often helpfill

in physical and geometrte applications, yfiere these ideas are discussed in

terms of the resolution of a vectOr into Vector components. In the' above
..... .

discuation, w say that we resolve X :into vector components m and' n
ANN

respectively palle1 and perpendicular to Y

) have

From the definition of the inner produCt of two vectors

A
lit

(1) Ithe component .of X in:the direction of Y 1

X. Y
X Cos. e =

X . Y
wheke

...-

represents the unit vector along the Y direction.

(2 ) the cowent of Y in the

15t1

4

direction of X.I

Alb. An An AinA Y
Y cos 0 = --- where

1174 mi
An

represents the unit vector along the X direction.

-

a

Exercises 3-8 and 3-9 ,

Verify Thebrem 3-14 (b) for the vettors

.X = [204] 2 IF. [..11-31 and t = 5 .

.2. If it-. [x10x2J and 1= {5r1, prove that (t7) 7 (ty ) for

y

any scalar t..

3. Prove the corollary of Theorem 3-14.
4

4. (d) 'Supply the reasons for each step 6f the proof of the theorm in

Example 1 follloWIng Theorem 3-14. .

(b) Same as (a) for the theorem in ExampTtr-2.

4

Find the area of the triangle determined by A = L3,-11* and 216,1

and checicArour result by any method.

6. Givefrn = 21 - 3j

(a) -.A7 Upon 1.3.

(b) B upon 7.

.1

and B = -21 + 6 Find the component of

II s
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3-9

7. Given vector representing a Wind of 30 mph. from the sotthwest.

/. Locate this vector in a coordinate plane where the positive side of the

1

de

y-axis4is coisidered to lie in the north direction, Resolve this vector

components (as described In Figure 3-23) Withinto its in and

respeit to:

(a) the x and y axes.

(b) the line e 1,0 .

(c) the vector I" = (10,15] .

Challenge Problems

-1% (Ceva's Theorem) Lei P ,be any point not

AP CP intersect

BC AC , AB respectively

at Q., R, S . Show that

d(A,S) .d(B,Q)
d(S,B) d(Q,C) d(R,A)

In-triangle ABC let

51,AB 4and let P be

any point op CD . Let

AP intersect BC at M

and BP intersect TE

at N . Show that

Law . Lam ,

(Bint. Take D to be

3. (Menelaus.' Theorem) Let I

be any line which,does not

pass through any vertex of

triangle ABC . Let'i

intersect AB , AC ,

respectively at P, Q, R

Shady that

d (AA) 1C,R) d

A (Q,C) d RIB) d P,

vat-.

.133 ,

on. triangle ABC . Let
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Prove algebraical-1Y

(x171 x272)

NOTE:

(x3h.

2 2., 2 2.
< tx1 + x2 Ayi + )

lys is a ease of Schwart's inequality, another form.oi%

vhich is'

x2y2 +

(13) Writej.hese in

(c). What geometric

left and right

)2 (x..2 2 2)(y 2 y.2 2)

3 3 - 1 2 3 1 2 3

1
vector notation.

interpretation can ie made for the case in,which the
e

members are equal.

3-10. Summary and.Review EXercises.

The ehapter.just concluded dealt with vectors and their applications.

After revieving some basic idees about directed line segments (objects with

both direction and magnitude), a vector was defined as an.infinite set of
1

_eqeivalent directed:line segments. The Origin-Principle allowed Us tp relete

a vector to any point in spade as an origin. 'We found it usef1.11 td'select the

,Origin-vector, Vat member of each set with itp initial point at the origin,

as tft Simplest representative of a vector. The unit Vector and zero vector
-

were defined and the term scalar introdurd.

the next step in setting up amaigebra of vectors vas taken when the

equality of vectors wes defined in accordance vith cotton practice., !She

operations of addition and subtraction of vecters and the product of a vector,,

by a scala`r were defined. The last concept made it possible.to state that two

'vectors are parallel if and only if ane is a scalar multiple of the. other.

The prigin-Proinciple related operations with vectors o the correeponding

Operations with their respective origin-vectors.

It was then premed that the commutative ahd associative laws hold for

the addition of.Vectors. Scalar multiplication satisfied the associative law

(rs).-P = r(s7) and the distributive laws ral'+ =.4.+ rQ and

(r + = rI + 4 . The zero vector 7; has the usual properties of the

additive identity.; the additive inverse, - is definSa by 116+ 5*.

The definition of a linear pombination of vectors made it possible to

prove some basic theorems about vectors. Theorem 3-5 stated that; in a plane

any vector can be expressed in terms of any Wwo non-parallel and non-zero'

vectors. After the -Study of Vector components, it was pointed out that any

vector can be represented as.a linear cotbination of the unit vectors

13'14



3-10

[170] and j . [0,1] . Theorem 37,7 made it possible to determine if a.

point P lies on the line passing through the terminal points of tr distinct

ivectors A and B which do,not lie on the same line l'ay proving that

Tr. (1 rt.. Sets of poihts on a given line.could now be given wvectil,

characterization. Theorem 3-8 offel4a'a second'method for dividtng a line

segment in a given ratio. r
Vector components play a basic role in the application vectors: The

.operatiohs on vectors were defined in terms of these components. If X =

= [c,d] , then 7 4- Y = [a + c b + d) and ral = [ra,rb]

The inner product of two vectors ints defined by 7.7 = 171171 cos. 9
where Le is the angie between the two vectors, with 0 < 0 It was
then proved, that if 7 = [3(1,x21 and Y = ry1ly"21 , *then 31C-. = x1y1 + x2y2

A physical application was presented ill the concept of work in physics. An

important theorem is that two vectors, X and Y are perpendicular if and
Ake .11g

only it, X. Y O.. The inner product has the following properties:

(1)
-a

(2) (t1)).-7,=7. (ti) ..t(t-1) where t is a scalar.

(3) 7. (al' +.1);) = a(Z. Y.) + b(7.1.) where a and .b are acalars.

The inner product has many applications in geometry. We shoved how. it Could

be used to determine an angle between vectors, to find the area pf the triangle

determined by two vectors with a common init:ial'point to prove that the diago-

nals of a rhombus are perpendidular, and to show that the altitudes of a tri..

angle are concurrent. The chapter concluded *ith a discussion of te reSolu-,
g

A

tion of vectors. This Concept has considerable'application in physical problenm.

In the following chapter.which deals with methods of proof in.analytic

geometry, there will be more proofs applying vector methods to geometac

problems. In Chapter 8 there will be a brief .introduction to vectors in a'

three dimensional space.
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R . Review Exercises

1. It r= [3,-5] , ,6] -C7. [2,3] find X in component fort such

that

(a) 14-I. Z""ie
(b) 35-= 5rc

(0 2(r_ -B.) 3(6%.1.)

2. Prove Theorem 3-3.

3. Prove Theorem 3-4.

i. Let r [2,3] ,

single vector equal to

(a)' 21+ -

(b) - + 3-6

(c) + Is) _

(a)
(e) '3(Z+13) = 2(r.
(11 2(3-c +-z) + 3(7+ Ii3k)

= [-1,31 . Find in component form, the

(a) 5(r- + 3(r- 1)
- (e) + Aa) + 4%7 4.-15)

(r) sy + 7- Z)

Use-the values of r., as in Exercise 4, and find le in component
form so that

(a) A + = C + X

) 2.4T + 3t. 14+
(e) 2(r _ ) = 3(-7)

6. Use the values 0 I lr

.value of

(a)
(b) 2r. 37
(c) (1.3. + -6)

(a) 2-17.-(3r + 2-6)

+ 73) -ft- TS)

(a) t +27.7
(e) 3(5+ T) =' 2(1- S)
(r) 2(1 +7) 4. 307 = 0

as in Exercise 4, and find the numexical

.(f) (ag.' + 3Z).. (27Z- 3.)

(a) (3r + 513-) (3.11"

(h) (A- + _ ac.) . (13- _ T +

-(1) 313.4.11:66) (5-z - 2-6 + 14ii)

(i)

7. Use the values of AlB,C, as in Exercise 4, and find the numerica

values of

(h) 1712

(1) 1112 + 1-12
13-1712 14-612

(k) 12-1A + 37i+ 14C1 2

(1) 1Z- iT12

.(m) 4712 + 31112 41-612

(n) 21PM 116312
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= (1,01 and 'j = [0,1) : we may express the vectors of EXercise 4

thusy r= 2i +.3.J. 31 - 2J , Cé i 3j In each part of EXercise

4, restate the original problem in terms of i and .j ; then, carry out

your computations and expresS your results in terms of these components.

(Refer to EXercises 8 and 4 above.) Restate, in each part of Ekercise 5,

the problem and tile solution in terms of i and j components.

10, (Refer to Ekercises 8 and 4 above.) Restate, in' each part of EXercise 6,

the problem and the solution in terms of 1 and j 'components.

U. Given A = (4,1) , B = (2,5) - (-2,3)', and D = (0,-4) .

(a) Find the an:cle measure of &BC , Lpap L.= , and ZDAB ; check

your results. .

sf

(b), Using 0 as the origin, find the areas,of 6OAR', 60BC , and

AOAC .

(c) Use theresults from part (b) to find the area of AOC .

12. Try to develop, with the methods of this chapter,.a formula for the area

of AtABC , where A =.(a1,a2) , B = (bi ) C = (c1,c2)

13. Find the area of the parallelogram in which la and OB are adjacent

sides. Can you a2p1y these results to an earlier exercise in this set?

14% Find the.vector representation of,an exterior point of division which
adivides the directed segment (AA) in the ratio where:
b

(a) 11 = [2,-1) t = (-1,31 , and = -2

(b) I p = [2) and

..0

'.(c) , t = [1,-2,4) , and .= -3

(d) = [-9:71 [3,-21 : and =

1F15. Given the triangle ABC with = [2,3] , (-1,21 and =

(a) Describe the triangular region, its interior, and the triaale itself,

using these vectors and two scalars.

(b) Show that [1,3) is a vectOr whose.terminal point is an interior

4

point of the:triangle.

(c) Show that [1,13 is a vector whose terminal point is an exterior

point of the triangle.

*(d) Show that the segment joining the points described in (b) an414 (c)

intersects the triangle.
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4

*16. Consider the convex quadialateral ABCP with X- = [2,3] , = [-1,2] /

..[104] 0 and 15 mg [2,4] Find an expression for the polygonal regien

ABCP uaing these victors and thiee scalars.

*17. Given the four vectors X.,. , t!, and 1,' who'se terminal points are/not
*

coplanar, find an expression for the tetrahedral .region ABCD :in terma of

these vectors ana three scalars.

18. Find the measure of the angles formed by the Intersection

(a) 2x 3y - 8 = 0 and 3x - 2y + 4 0 .

(h) 5x 4- y - 2 = 0 and 2x y 6 = 0 .

(c) x y 3 . 0 And'

(d) x 2y . 0 and x = 4

19. Points A . (1,0) 1 B = (5,-2) , and C = (3,4) are

triangle. Find the measure of each angle of AOC .

of the limes

./

the vetiCes of a

20. Given points p = (-31.8) Q'=.(14,9) R = (4,9) and S4 .(-30.0

Find the measure'of'each angle of quadrilateral PQRS , an,/nane

figure. if

- 4
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4- . Introduction.

One of the satisfactions we hope-you will gain from your study of

analytic geometry is the realization that.you 4_ye some very powerfUl tools

for solving many seemingly difficult or impoSsible,problems. We can demon-
.

strate this, even soteafly in.our work,m4paipiving the'simplicity and
t$

'directness of analytic proofs:for same theorems'from plane geometry and

trigonometry. You-will recall: many of theste theorems,. and you also may

recall some,of the struggles Which resulted from using synthetic methods on

theee problemi?

S.

4-1

qhapter 4

PROOFS BY ANALYITC!'141BODS

t

By increasing the number of methods available to solve problems, we

create another problem7-the uneertainty as to Vhfch methed to use in a given

situation. We shal). soMetimer ask you to'use a particular method so that you

may develop competence and confidence in its use. A tennieplayer W., in

order to Strengthen his backhand, be encouraged to use it temporarily mOre .

than he would in normal play. Your uncertainty and-discomfort with a new

method.will last only until you have mastered it. You should understand

also that even a competent mathematician may start with 6ne method and lir

discover later that it is not as convenient as another method. Az you stugy

the examples in this chapter, you should-watch for clues to the reasons, for

choosing one method rather than another. CarefUl observation atthis point

will smoOth the way as you proceed.

For the purposes of this chapter we assume that you know the kinds and

basic properNs of common geometric figures and that diagonals, medians, and.

: he like, have been defined. These itets, as well,as the theorems to:be
,

0 scussed, may be reviewed in SMSG Geometry, Intermediate Mathematics, or

,equivalent source.

'?,
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4-2

4-2. Proofs Using Rectangular Coordinates.'

Let us now prove some geometric theorems in rectangular coordinates.

e

EXample 1. Prove: The median to

perp6d1cu1ar to the base. We might

find the triangle placed in relation

to the coordinate axes, as in Figure

.4-10 with AC:. BC and with, D the

midpoint of AB From an analytic%
point of view, to prove CD j AB we

. must show, that the product of the

slope of AB and the slope of CD

is -1 .

the base of an isosceles trianile ié

Figure 4-1 4.

04
In order to ensure that the triangle is a general one we might select,

Coordinates as follows: A = (all) 1 B = (c1d) (elf). It hllows,that

midpoint
(a C 1-b d

) By hypothesis d(A,C) ..d(B0C) .

We apply the distance formula tO obtain

1/(a e)2 f)2
+ -

2a
2

- 2ae + e
2

+ b
2

2bf + f
2

= c
2
-'2ce + e

2
+ d

2
- 2df f

a
2

- 2ae + b
2

- 2bf c
2

- 2ce + d
2

- 2df

We next calculate slopes. The slope of CD is

and the slope 'of AB is .

a - c

The product-of the two slopes is

b + d - 2f
2

a + c - 2e
2

b
2 2

a
2
tpac - 2ae - ac - c

2
+ 2ce a

2
- 2ae - c

2
+ 2ce

_

/

4.16
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Equation (1) canipe written as
.-

_
(2) k2 -.2ae - 'c

2
+ 2ce = -0

2
+ 2bf + d.

2
- 2df 6

SubOtituting the right member of (2 ) into the deiominator of the product of

the slopes, we obtain

2 2
b 2bf - d 2df

- -1 ;
2

-b
2

+ 2bf + d 2df

hence, the theorem is pro".

It would be diacouraging indeed if all of our coordinate proofs involved .

as much algebraic manipulation as ekhibited in thia example. -Fortunately,

this is not the ,CaSe, and you may already see What can be done to simplify

th algebra. It was not necessary to choose'the eoordinates as we did.

The Propeities of geometric figures depend upon the relations of the

parts and not upon the position of the figure as.a Whole. Therefore, in our'

example, since onlithe triangle and not its location is specified, we could

4ust as.well Sel5p a coordinate system

,fh which A is tle origin and B lies

pe the positive side of the x-axis.

This situation is illustrated in Figure

NO.72. We'noW may have the' following

coordinates for the 'points: A = (000).,
a

B = (a00) C = (b,c) D

Note that.,1.1 of the oordinates

are zero. This is the feature mhich

simplifies thefalgebra in our theorems,

and this desirable goal provides Us With'

a general gutde in choosing'coordinate

aifor all our problets.^

0 In actual practice we are moue

likely to make a drawing with the axes

oriented as in Figure 4-3. This leads

up to consider two methods of relating

a g ometric figurelto a set of axes.'
/

Figure 4-3



The method we have just described, that of assigning coordinates to a given

geometric figure, is based upon the properties of coordinate systemn cleveloped

in.Chapter 2., Anothcr method in common use emPloys the principles of rigid

motion in Which geOmetric objectsiare "moved" to more suitable locations

without changing their size or shape. With respect to our current example,

we would arrive.at Figure 4-3 throu*this second method by assuming,a fixed

coordinate system upon which we place QABC so that A coincides with the

Okgin,and B 'is placed On the positive side' of the x-axis. The difference

in the methods is largely one of viewpoint.

Another device WhiCh you will find useful can be illustrated.by assigning

coordinales to the vertices o in Figure 473 as,followre; A = (6,0) ;

B = (2a,0) C = (b,c) . The reason for using 2a for the abscissa of B. is

that we now have D = (a,O) gnd we can complete the algebra without .so much

calculation involving fractions. The principle here is that a few minutes of

. 'foresight may save hours of patience.

Sometimes we pay a small price for the simplicity we gain. For example,

the choice of coordinates suggested in the previous paragraph leads to trouble
10

_regarding the slopes. Although the slope of AB can be found to be zero,

CD does not have a slope, since a = b (Use the distance formula with

.d(AC) = d(BC) to verify this*.) Nevertheless, the problem has been

simPlified, for this means that AB is horizontal and CD is vertical, and

this is also a condition fen. perpendicAlarity.

You might have chosen .144c.otinate

system in which fial' is on the x-axis

but D is the origin. This is a fine .0
..054pice. AB you can see, in Figure.4-4,

ire choose A = (11,0) , then B = (-a,0) .

It remains for.us Io,prove that C lies

on the y-amis. Let C = (b,c) and use

the distance Wmula in d(A,C) = d(B,C) .

YOU' can show that b = 0 ; hence, C lies

on the y-axis and

Leta summarize the procedures we have seen in this example. Usually

there are more ways than one to attack say given problem, but certain,general

steps can be oUtlined.. It was natural and userul in this example to use

8



rectangular coordinates, since we were concerned with midpoints, lengths, and

.perpendicularity. Other situations we beet later may lead naturally to

vectors or polai coordirAtes. In the cases'for Which we decide to use

rectangular cocirdinates, we might follow the outline suggested below.

(a) Choose a cOordinate system (or place the figure on one o as to

simplifk the algebraic proceases. ,Often this means having tex

of the figure at the origin arid one of its sides on the-x-axis.

(b) Assign coordinates to points of the figdre so as to accommodate the

hypothesis as simply and clearly as possible. That is, gake the ,

figure sufficiently,.but not unnecessarily, general.

(c) If possible, state the hypothesis and conclusion in a way that will

correspond closely to the algebraic pro4edures being used.

.(d) Plan an algebraic proof. Watch for.opportunities to employ the

- distance, midpoint, and slope formulas.

J -

Let.us try another theorem from plane geometry.

Elample 2. Prove: The diagonals of a parallelogray bisect each other.

Following the outline of our procedures, (d) to (c), we represent a

parallelogram in a drawing and orient it with respect to the axei as in

Figure 4-5.. We let A . (OM and

B = (a,0) . The question of choosing

coordinates for C and D can stand

Isom discussion. The coordinates of

C and D are not tndependent of

those of A d B nor are they

independent of each other. How much

can we assume about a parallelogram?

We know by definition that the opposite

sides of a parallelbgram are parallel:

This enables us to see at once that C

Figure 4-5
and D have the same ordinate. Further- f
more, since BC 11 AD their slopes are'equal. This suggests that we use

the slope formula to obtain a relation betWeen 'the abscissas of C and D

namely, that the abscissa. of, C is the abscissa of B plus the'abScissabf

D Thus we wrfte D = (b,c) and C = (.a + b,c) . If we are,allowed'to use

II



he property of a paralletigram that the opposite sides have equal lengths

then we shall reach the,ipame conclusion more readily.
A'

Some people prefer to employ these elementdry properties of the common(

figures; others choose to assume no more than the definitions. For the

purposes of this sectiOn we shall agree that we may use the properties

ascribed to geometric figures by their definitions and* the theorems listed.

,in EXercised 4-2, taking these theorems in the ofder in Which they are listed.

Our current example would be listed afi'er Exercise 4 so the conclusion of

Exercise 4 would be available to us When we chose coordin4es fOr Figure 4-5.

The conclusion of cur example is, reached quickly. We are. required to,

prove that the diagonals bisect each other. This rans.that eadh diagonal

intersectSthe other' at its midpoint. An application of the midpoint formula

shows that the' midpoint- f4each diagonal i;
(a + b

2 2/

A

We conclude this section with a challenge. Try.to prove the following
. - . .

theorem by synthetic mett wimOs, gnd compare your proof th/Zhekone suggested
,. .

.

below.
.

Examplp 3. Prove: If two yedians of a* triangle are congruent, tOie

triangle is isosceles..

We prefer to, Use coOrdinates. The triangle must not be assumed to be'

isosceles, so im assign coordinates in

Figure 4-6 as follows: A

B = (2b,0) C = (0,20 .

be the midpoint of "AC

= (2E1;0)

Let M =

art.let

N = (b,c) be the midpoint of BC .

Next.we shall express the hypothesis,

d(AIN) = d(B,M) in terms of the

distance formula. You are encouraed-

to state the desired conclusion and to

'complete the details of.the proof.

b.

1 5 o
V6.

Figure 4-6\
/Of



Exercises 4.-2

4-2 A

I .

The following exercises are theorems selected from the usual development

of plane ge-oMetry. You are to grove these theorems in rectangular coOrdinates,.

using the "ground.rdlesn xe have outlined:

1. The line segmentvjaining the. midpoints of two sides of a triangle is

parallbl todpe tHird side and has length equal to-one-half the length

of tHe third side. .

2. If 4 line bisects_ one,side Of a triapg4-andis,Parallel to a second'

-

side, it bisects 'the thfrd side:

3. ThAocus of points equidistant from two points is the perpendicular

bisector -of the line segment joining the two given points.

4. The opposite aides of a parallelogram have equal length.

5. If two Ades of a quadrilateral have equal length and are parallel,

.the quadrilateral is a parallelogram.
4P

6. If the diagonals of a quildrilateral bisect each other, the quadrilateral

is a parallelogram.

1
7. If ihe diagonals of a,parallelogram have equal length, the parallelogram

is a rectangle.

8.. The diagonals of-a rhoMbus are perpendicular._

9. If the diagOnals of a parallelogram are perpendicular, tDe parallelogram

is a rhoMbus.

10. The line segments joining in order the midplints ofthe successive sides

of a quadrilateral form a parallefogram.

-The line segmehts jaining the midpoints 4 the opposite sides of a

0 Auadrilateral biseat each other.

r12; -The diagonals of an isosceles trapezoid have equal length.

13. The median or a trapezoid is parallel to the limes and has length equal

to one-half the sum of the lengths af the bases.

114, If a line bisects one of the nonparallel sides of a trapezoid and is

parallel to the bases, it bisects the other nonparallel skde.

145
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ts.

)

15.' In any triangle, the square of the'lengib of a sidwoppoSite an acute,. -.-

angle is equ'al t? the sum of thp squares of the,lengths of the other two

sides. minus,tiiice the product of the length of:one of the two sides and

the length of the projection of the Other on it.

1 . The medians of a triangle are concurrent in a pointIthat divides eaCh of r

the medians in the ratio ..2:1

17. The A1'titudes of a-trianglv are concurrent.

18. A line through a .fixed point P intersects a fixed circle in Points

A and B Find th e. locus of the midpoint of AB . "(Consider three

possible positions for P relative to thp fixed circle.)

4-3. Proofs Uaing VeCtors.
P

We shall.now prove several theorems ofgeometry by vector, methods. Some

of the proofs are moce difficult than those using methods discussed in your

geoftletry course or'in the preceding section. Others are accomplished-more

simply or conaiiely. 4n.any case, the experience'will Ile of great help in

future mathematits,courses and in applications to science or4engineering.

It-will contribute toward your generai ability to solve problems by giving

you an,additional tool and apprOach. 4

We shall demonstrate these approaches by solving several problems ih

detail.

,Example 1. Prove that the Ilied n of a trapezoid is parallel'to the bases

,and has length equal to one-half th 'sum'of the lengths of the bhses..

0 .

-We first draw and labei a trap zoid

ABCD with AB 11 CI? and with E and F

'-the respect .1.T .midpoints of AD. _and BC .

If we were using a rectangular coofdinate

6ystem in this proof; we probably would

choose the _axes as in Figure 4.y. But

since we are using a vector proof, we do

not need the axes at all. In fact,

because the origin vectors would not give

us any advantage in the proof, neither do

we specify an origin.

152
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Son

A vector drawing for the problem night then appear ab in Figure 14.8.

Figure 478

Something should be said aboUt our choice of vector-representation.

Sinro E is the midpoint of AD if 'we repre;ent AE by° a s then ED
A!

may alsolbe.represented by a . Similarly, we choose 17 on the other non-

14-3

Jib

parallel side. c and d represent the based, and It repreSents median IP .

We are to prove

= ;(d(A,B) + d(C,D))
ft

x c and tic I d

Since one maY "move" from E to. F. by going directly there, or by

going through D and C or by going through A and B we have

AWa o
= a .4: d - b

Zio 411. aba

x = -a.+ C + b

alio Aim Al 11.

therefore, 2x - c + d..

Note again that When "mpving" arouna._a vectordiagram -we add vectors Which
--

have the Same sense of 4rection as our motion, and we.subtract vectors which

have the opposite sense.of diiection of our motion.

.1 Jib
py the definition of parallel vectors, if 2x =c4-d,then

x II (7+ 7.4 ; sinceit is given that c d 1 it follows that x 11 c
-1

aJim A!
"and x I, d . Furthermore, if Px c + d then

1-)71 = 111) ,or: d(E,F) gd(A,B) +

hence, the theorem is proved. You may wish to inv,eptigat'e what happens to the

proof if yote alter the direction of any of the vectoru in the diagram.

4
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fts-mple 2. Showthat the midpoints of,the sides of a quadrilateral are

the vertices of a lyarallelogrem.

This situation is depicted by Figure

4dTin Which Po Qvil, and S are the

giyen midpoints of the sides of quadri-
.

lateral ABCP . Once we Choose an

origin, each Oint of the figure de- .

termines.an origin-vector, (It might

be profitable- for you to copy the figure
e,
on a piece'of papery select some poine

as an origin, and draw the origin-_ .

vectors to the vertices,)'

A portion of the figure with a set of

origin-vectOrs ia shown in Figure 4-10.'

lje have also identified the vectors trom

A to P and froM P to B in order

, to make use of the fact that

d(A0P). d(PoB) .

and

Since P = A +-a
aka Ain .1
P B

2P = A + B

-1"
or

04. 7.)

2

T (Al +

'

Figure 4-9 .

fa.

Figure 4-1.0.

'(Had we not been interested in calling your attention to an application of

vector additillono.we would have obtained the same results from the Point of

Division Theorem.)
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4-3

AB* Ai. As.

We next note that vector P Q is equal to vector R because both

t AD
are equal tb (A . But Why did we choose an expression like2

AM Alm
There is 4 good reason for the choice. The 1 e'bn vector .P Q. is parallel

umt
to PQ and remeMber that we are to show that certain segments are parallel.

AN AN Aft

In order to see the importance of P-Q=S-R,let us takeacloser

-look at this situationsusing a different origin. SUppose,we isolate the

lower part of Figdre 4-9 containing

Points ,P, B, and Q as in Figure

4-11. If we choose B as the.origin

and E ,so that B is the midpoint.of

QE p then w4 have vectors as marked on.

the diagram. The'vector from Q to'
A! AW AM Am.

is -q 4- g which equals P - Q and is
-.0 a..

therefore equal to T It f011ows-_then
-

. A! A! AN. ...
that the line on vector .1, --Q is T 4-- __P" OP.*'1. OW N' .%, --......

-.parallel to Pg2 . Similarll the line on

'11

A! A!
vector S - R is parallel to vr ; and,

Am A!
since P Q is equal to and, consequontly,

Jib
parallel to S R 1 we conClude that

PQ II SR . In Alle same way we.show that

and PQRS is a parallelogram.

% .14 ....

% e °

.. ... 0

Figure 4-11

Example 3. Prove that the medians of a triangle-intersect in a point

Which is a point of trisection of each median.

Solution. Let ABC be the trianglre and p, (4, and 'R the midpoints

of its sides,as shown in Figure 4-12.

4.

Figure 4-12.
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By the.Origin Principle we,may pla the origin Wherever wr -wish. If

we are successfUl in proving the medi concurrent, the ',pia of intersection

Would be an ideal choice for the origins for Aen Ich origin-vector to a

vertex would be collinear with the origin-vector-to the midpoint of the

opposite side.

- We cannot assuthe all three medians concurrent, but we can let the origin

0 be the intersection of AP and BQ ; Then to prove that CR contains

---\

.

,this point, we mUst proVe that R and 17 are collinear, or that 17 is a
Tow

.soalar multiplezof C .

. Proof. Let-the origin be tile intersectiön of AP an0 BQ Since P
Jib

and Q aremidpoints, and since P and Q are collinear with A and B
4

respectively, we may write

1
= xA

.

If we subtract Equation (2) from Equation (1.), we obtain

1 .a. AN. 011e

A . xA yB .

il

By th unique linear ombination theorem (bleorem.3-55, x = - -1 and

1
.

y .--- - -2- . The £ metric interpretation of this discovery, is-that 0 is a

trisection poinJrof AP and' Yi4' . If we substitute these values.in

EquatiOn- (1) and (2) and add, we obtain'

o .o 1 1 A Aft j 1P +Q= A+ - B.
,..,

1 -A
Since 11, (A + B)', the second.two members of this eeluality become

a a
R C or R

Thus, R and C are collinear; 0 is on CR ; an0 0 is a point of

briscution or CR .

Tf we choose another point as origin and let G be the point of,inter-

section of tire media c the Point of Division Theorem'permits us to write

ai 1

G + P.

al. 1. /1 jft. 1- 1 j .11W

Or G A +. 7.; B + 0) A i c + B
3 3

150 I
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We lave not only solved the problem, but also have represented the point of
1 alb

concurrency by the vector --(A + B + C) . This point is Called the centroid
3

of the triangle and has an.important property,connected 'with .the idea of the

eentgr of gravity of a phYsical object.. If a thin uhiforM sheet (such as

cardboard) is cut ip the ehape of the triangle, it can be balanged on a

pencil point placed at the point corresponding tothe centroia.

Example 4. Show that the bisector of an angle of a triangle divides

the opposite side into segments whose lengths are proportional to the

lengths of the adjacent sides.

Solution. Let bisect LIOR
6

and let the vector from P to Q. be

represented.by a 2 the,vector from ,P

to T by b and the vector.grom P

to R b -, as showu in Figure 4-13.
...

We ar to show that

dr,T) . d(P,R)
d T,Q) d(P,Q)

'Figure 4-13

This problem involving an angle bisector affords Us an opportunity to

demonstrate the use of unit vectors in

the angle betwren a and c must iie

adjacent sideajie along a and c .

a solution. A vector which bisects
-

alofig the diagonal of a rhombus Whose

We employ unit vectors to accomplish

this result. n
_ .

.
.

Any vector along 1!. can be reprrsented as a scalar multiple o

part4ular, the unit vector along a' can be represented by
Alb

Then the 'vector fre6m P to E and the vector

determine.a rhombus Uhose diagonal PG biseets th

157151
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e vector from P to G is then

'vectoi along it0, say froth P to

4" Now suppose r is the ratio

Aft 44
a

and any

1;1 fc

can be represented by a scalarMultiple,

. Since the vector from R to Q

.18.%

is (a ) the vector from R to T may be expressed as r a Cj 2 and

tpat from T to Q by (1 - r)(a c) . We may write

+ r(7 - .7)

and obtain k + 1;) c + rcEr - In) , k k 41. A
or ----- a 4- c = ra - c .

Equating the corresponding coefficients, we have

it follows that

17

hence,

r and_ - 1 - r

reftl

r jct.

1 - r rai

dr,T)) dr;1
d d 160Q

Exercises 4-3

L. Give a vtctor proof that the diagonals of a parallelogram biSect each

other.7

,7
2. Prove by using vectors.that a 14ine segment which joins one vertex of a

'parallelogram to the midpoint of

an opposite side,passes through a

point of trisection of a diagonal.,

(AB in the figure.) ProVe also

that the'dilgonal AB passes

through points of trisection of

OX and OY .

' 3.. Rework Example for the case in which the origiu is selec'ted4to be the

point A Does this 'choice of origin simplity the proof?

1521-59
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4. In parallelogradi

f '
ci(C 1

I
d(CoB ) r

QABC , Op intersects ra at Q,.

show that
0

4-3

a

Exercises 5 to 10 are thechrems from plane geometry which you are to

prove by the vector tethoda illuatrated in the examples ampis aection.'

5. If two medians of a triangle have.equal lemgth0 then the triangle.is

isosceles;

6. The median to.the base of an isoscelps triangle is perpendicular to
,

the base.

7. The line segments joi!ning the midpoints of,the oppoiite sides Of a

quadAlateral bisect eachebther.

8. The line segment joining.the midpoints of.two sides of a triangle is

parallel to the third.side arid has length equal to rme-half the length

Of the.third side.

9. An angle inscribed in a semiciitle is a rfght angle.

10. The bisectors or a pair pf aqapent sUpplemgntary angles form a'

.//

11. D0 E, and F are midpoin4of NBC 0 as shown. Let the Vector from

A to D be a , the vee;tor from
Alb /

right angle.

'B to E 'be b the veptor from

C tO F be c . Prove thak

a b c = 0 '.
f
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4-4

m

4-4. Proofs Using Polar Coordinates. '

Polar coordinates are useful in many applications, part cularly if the

problems involve rotations or trigonometric functions.

The following example from trigonometry illuStrates on such te.

0

Example 1; Show thqt cos(fl

a' and- L. be ai shown in

Figure 4-14. We select points B and

C on the respectiveiterminal sides of

the angles-and let OB,C) = a ,

d(A,C) = b ,,and d(A,B)= c . The

distance formUla'tells us that

42-, x1)2

\I.= cos 0 coa4 a sin 0 sin a .

(-

.Figure 4-14

fl
Now if we convert from rectangular to polar coordinates as 6Utlined

Section'2-5, Equation (1) becomes

a
2'

(b cos 0 c cos a + (b sin - c sin .4 )2

Expa1ng the right member and., applying the identity sin e + cos

WQ Op9ain

(2) a
2

= b + c - ac(cos p cos a + sin rsin a )

Noting that the measure of PAC - 0 - a and comparing Equat,ion (, ) with,

the Law of Cosines for 6ABC we see that

bcos(P-(1)=-00scos(14-sillPsill"
As fioi7 the neit'example, it is unlikely that anyme would choose this

kind of proof when other proofs are avallable, but nevertheless, it may4be

instructive to look at one demonstration of a simple geometric proposition

using polar coordinates.'

IGO
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4-5-

Elemkole 2. .Prave that the median to the base of an isoscpeles

bisects the vertex angle.

onsider Figure 4-15, in which

AC .47:M . In order to describe tp

, angles in question, we let C. be,

the pole. We also let D ithe mid-

point of 49 lit on theloolar axis.

Wlthout loss of generality, we have
(0,0)

A = (r0 00 B t (r, 0) . lie must

. prove a =

Figure 4-15

TO simPlify the notation we shall let d(C,D ) = f and

d(A,D) = d(B,D)..= g . Applying the Law of Cosines, we have,

2 2 2
A in 4WD y g =-r f 2rf cos 0

\.

and in bACD s g
2

= r
2

f
2

- 2rf cos a .

111. lie see then that cos a = cos p. Since 0 < a < -- and
2

- -2- < 0 < 0 thia implies. a =

4-5. Choice of Method of Proof.

It is timR we paused to survey Ale variety of problem-solving tools

Which are now at our dispopa1. We have a choice of. three' basic systems
. ,

-rectangular coordinates, polar coordinates, and Vectore; within each

system we have different representations to suit different Purposes. But the

question uppermost in your mind at the moffent probably is, "How do Idecide

which method is the bestone to use?"

The question does not have a simple answer. Some problems are best

worked by one particular methodr othel/rroblems seem to be approachable by

. any of these methods, and some problems appear to be impossible regardless

of what we try.

155 161.
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1

HoWever, there are certain ga.idelines Which may help us.

(1) Try to decide upon a coordinate system whiph is appropriate to,the

problem, Think over What is lolown ahoUt-the problem'or what is to

be provedli or What kind of answer'is. required,

(a) DistanceS between points, slopes of lines, and.,,widpoints'of

segments are easi handled in rectangular, coordiaates;

present, yOu should try to

to the problem.

therefore, When ese ideas are

'fit rectangular coordinate axes
,

. .

If the prOblem inwolves angular motion or circular functions,

it would be wise to look at the possibilities of polar forms.

(c) Vectors are quite versatile and fit a wide range of conditions.

Concurrence, parallelism, and perpendicularity of lines, as

10ell as problems of physical forces., are situations whioh might

lead you to 4chpose, a vector,approach.

,(2) Make a drawing relating.the know facts Of thZproblea to your

ghoice of. method. Much time and effort may be saved by a reasonably

accurate drawing. This not only helps to relate the parts of the

problem, but it serves as a check qn'the calculdled results..

(3) Choose coordinates or vectors so as to simplify the algebra. Take

advantage of all the given inThrmalion at this stage, but be careful-
.

'that yoU-Maintain generality Where it is required.
0

(4) Watch for opportunities to use parametric representations. This
7

May be something new to you, but you will observe frequent cases

in succeeding chapters in which this special method will simplify
r

troublesome problems.

(5) 'Work many, many Problems. It also will help if you try to solve a

given problem in several different ways. ,In this area of mathe-
,

matics, experience is probably the most valuable asset. Sometimes

a choice of method can be explained only on the basis of experience.

--
(6) After you have completed your solutiondto a;problem, it is wise

to look back over your wolk. You may see an unnecessary step you

can eliminate, an unwarranted assumption you should justify, of a

general tightening up yoU may accomplish. In any case, you gain a

new perspective on your work which increases your understanding and'

ligreciation
of what youhave done.

'1 62
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- Review Exercises

..1

Fo'r EXercises 1 to 1100 first choose a coordinate syte which you think :

.

is appropriate for 'each theoreM, and 'then prove the theorem accordingly.

1. The midpoint of"the hypotenuse of a.night triangle is eqUidistant from

the,three vertices of,the triangle.

*vs- The loCus'of the vertex of'a right arigle the siTdes of Which pass

through twO fixed points,-is a circle.-

3. the diagonals of a rectangle have equal length.

k. Shoy that the sUm of Ehe squares of the'lengths of'the sides o
.44

paratlelogram' ia equal to ilae- sum Of the 'Squares of the lengths of

its dit4onalss.

5. The line soinents joining in order the midpoints of the s cdesSive she

c,f an isosceles trapezoid7form a rhombus.

o. The line segment joining the midpoints of the diagonals o a tralbeidid
4

Is parallel to the bases and has length equal to one-half

difference of the lengths of the bases.

7. If lines are drawn through a pair of opposite, v,ertices of a parallelogram
.

and through the midpoints of a pair ok opposite sides in such-a way that

the lines intersect one of the diagonals in distinct poittsethe lines

are parallel and the diagonaa is "t-Msected.

8.. The perpendicular bi:Sectorsof the sides of a triangte.are concurfent'l

in a point that is eqUidigtallit from the three vertices of the t angle.4
. -

9. If two sides of a triangle are divided in the same 'ratio the 1 ne
. .

segment joining the points of division is parallel to the third side

and is in the same 1-at10 to'it.

10. Show that the vector joining the midpoints of two opposite sides of a

'vector,quadrilateral is equal to half the vector sum of the other two
sides. .
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OABC DAEF and HYGd are each paralelograms.

.....rolkspct.ive, diagonals., of, thp parallelograms OB

extended as necessary, meet in a single point X,

l3', In parallelogram (Au let P

and Q be ,p9ints on al4L4111/430,61 AB

such that d(A,P).= Let

OP fntersect 46. at '-and

atintersect t"6 y'. 'show

,tiat
i i.

or

Pi-olre that the
0 and HO

I

Prow that the surd of the squaxes.of the'iengths of the Bides o-f a
, .

quadrilateral exceeds the sum of the squ'llres of the lengths of its
diagonE2.1s by `14. times the square eft: the length of,the line se.gment

that joins the mj.dpoints of the diagonals.
,

10.

1.5. A band of pirates buried their treasure on an &island. ,They eliose a pot

iihich tto bury it in the followl,ng manner: Near the shore there ifere

tiro large rocks and a large pine" tree. One pirate started Out' from one

'rock along a line at right angle* to.the linerbetween this rock- and the
,

tree. He marched a distance equal to the distance' between 414 -rock and

the tree. .Another piiate started out erom the secOnd rock along a line

:at right angles to the line between this second' rock and th> tree and

marched a' distance equal to the dislance between thirock and' the trete.

The rept of fthe band of pirates then found -the spot midway between

these two and there buriedTthe 'treasure.

*4
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tia:nY Years later, these directions-came to fight and a party of,

treasure-seekers sailed off to flind the treasure. When they reached the
-0

island, they found the two rocks with no difficulty. But the tree had
A

long since disappeared, so they aid not know how to proceed. All seemed

lost'till the cabin boy, Who had just.finished his freshman year at Yale,

Rememberina the analytic geometry he hgd stddi'ed, he calcue

-lated where the'tiLtature must be, and a short spell of digging proved
41 4.
him correct. How.did he do it?

4

A
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Chapter 5

GRAPHS AnD THEIR EQUATIONS

5-l. Intreductifion

5-1

In Section 2-2 we discussed sets points arid their analytic regresenta,.

tions. The relation between the two s at the hPhrt.of analytic geometry, and
.

we shall review the Tundamen ns briefly er,. We confine the discus-

sion to the plane, but the extension to space is mediate. The sets of points,

will frequently be the geometric figures we met earlieri and the analytic re-
.

presekations will usually be given in algebraic, or trigonometric forms that

we have met before. .We propose to relate these ideas with the hope that your

compet,ence and appreciation for their use will continue to grow.

Let S be a set of points in a plane with a rectangular coOrdinate sys-

tern. Let. s(x,y) be an oPep sentence involving two variables. Let S

' sist of those points (a,b) of the plane such that s(a,b) is true. Then

we say S is the-locus (or graph),of the condition s(x,y) , and s(x,y) is

m condition for the set S . The plural bf "locus" is "loci", (Itis pro-
.

nounced as though it 'were spelled "low-sigh% The rectangular Coordinate
,

,

system in the plane could be replaced by aay'other cdordinate system appro-

priate to the problem and to the space ip which we are woging. -The chOice

of a coordinate system determines the "language".in which Ihe open sentence is

-stated. We shall often be concerned with the limitations of a partrular

language, and bhe details of the translation from one language to another.

Some of you may be us o a different way of talking about the matter.

In the SMSG Geometry there is a discussion of characterizations ot' sets. A'

condition is said to eharacterize a set if every pointj..eNthe set satisfies

'the condition and every point that satisfies the condition is in the set. The

mnditionq, we are chiefly interested in here are analytic.conditions (condi-

'tions on the coordinates of points), whereas in Geometry the conditions were.

%, stated in geometric terms.
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itions for Loci Graphs, and Graphs of Conditions... 10 =!WIN
discussion above is quite general, but in practice the conditions

tt ..:tter. most ate equation and inequalities. Fair example, we define the

graph of an equation (inequal ty) in x and y to be the set of points Whose

cootdinates satisfY the equation (inequality). Thus the locus Of the equation

x2 2
. 4 is the circle, with center 10,0) and radius 2 while the 101cus

of the inequalitY xy < 0 is the set of points in the second quadAnt or in

the fourth quadrant. Using set notation these two loci can be 'expressed as

follows:

(F = (x,y) x
2

+ y
2

. 4) ,

(F = ,y) : xy < 91 .

Using the same notation we pan express the loci of the equaZion f

'Aad the inequality g(x,y) > 0 as follows:

We now take up

points in a plane.

(I) = (xj,e) f(x,y) 0)

fP (X,Y) g(x,y) > 9)

,y)
s.

problelp of finding an analytic condition for A set of.

re is no routine procedure for doing this, but the

folfowing advice may be useful.

First a word about the choicel'of coordinate Systems, ,Ighen the terft's of

,

tpe probl6m leave you free, think carefully about the cdprdinate system to

use. Same curves with complicated equations tnsrectangular coordinates have

nice parametric representations. An equation in rectangular, coordinates for

.a'certain curve may be simpler than it is otherwise ifa coordinate axis is an

101 axis of symmetry. A circle of radius 3 has a simple equation in rectangular
,

coordinates if its center is made the origin, a still simpler equation in polar

coordinates if its Center is chosen as the pole.

Following common usage we will use x and y for rectangular

/lutes, and r and e for polar coordinates. We will also assume in each case,

unless otherwise specified,'suitable choices of axes and units. Only with these

assumptions may we speak about "the" locus of an equation. Without such assump-

tions an equAtion may have several quite different: graphs, depending on our

choices of coordinate systems. These matters will be considered more fully

later, particularly in Chapter 6.

After choosing a coordinate system we can attack the problem. We start

with a given set of points. Ttlese points are not given to us in a basket but

1(2
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5-2

inStead are determined by.some geometriC condition. We ars.looking for an

equivalent condition in terms of the coordinates of points.°Let us look at

what we:do in several examples.'

EXample 1. We describe oertain sets of points of the plane. .You

asked to give analytic description of each

(a) All the points(of the x-axis.

Solutiori. (1) = (x,y) y = 0) .

(b ) All the points above the x-axis.

(c

set.

Solution. (F = (x,y) :" y > 0) .

All the points 4-the plane except those

Solution. (P = (x,Y) xY / 0) .

on either axis.

are

The midpoints of-all line segments.in the first quadrant which, with

the coordinate axes, form a triangle, whose area has'a measure of 12

square' units.

Solution. If .13 = (x,y)

segment have coordinates

regiOn will then have area

""\
is one such pointi, the endpoints of its

(2x,0) and (0,2y) The'triangnlar

;1(2x)(2y) whieh must equal 12 .We

have the simpler eqUivalent relationihip xy = 6s. The graph of

this relationship contains points in the first and

but we want only those with positive coordinates.

is (p (x,y) xy , x 0 y > 0)

third quadrants

Thus, our answer

ExaMple 2; Find an equatio:in rectangular cOordindtes of the locus of

all points equidistant\fwm tWo.distinet points.

ow'

Solution. Let the x-axis be the line throug, the two points and let the

oriiiin be the midpoint of the segment deteftined by.them. Then the two points

are (a,0) and (-a,0) . Let (x,y) be any point in the plane. Then'the

distances to (x,y) from (a,0) and (-a,0) aye - a)2'+ and

)((x + a)2 + 2y respectively. Th int (x,y) belongs to our locus if and

only if these two distRheas.,t.a_egual, that is, if and only if

(1) 11(x 4- a)2 + y - Ax - a)2 + y2

Thus '(1) i s an equation of' the locus. (I) is, of course, not the simpl t

possible equation for the leicus. What is and haw cLn you get it from (1)
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EXample 3. We present somelksalyticliescriptions of sets of points of the

plane. Describe these seti iniordinary English.

(a) (P = 0) : r > 5. ,

Solution. -All pointpoutside a circle 'whose eenterAs at the pole

and whose radius is 5 .

(b) 4P = (xiy) I 31 7)

Solution. All the points on two parallel iinep;- These lines are

parallel to the line x =3 , and lie one an each side of* and .7

units witty.

(13 (x,y)': xy + 2x - 5r>, 2)

'N

.Solution.-.This inequality may be 1:iritten xy..+-Ox 7'y - 2 > 0 0or

,(x 1)(Y 4- 2) > 0 . This statement will be true far values,.cd'

and y such that either:

1 > 0 and y + 2 > 0 , or x - 1 < 0

that is if eitherf(

x > 1 an& y > .2 ;

The poi:Its' we want lie in two

"quadrants",!asjndicated :3r1

Eigure 5-1. The graph does

not include the boundaries Of

'the regions. How.could you

change the analytic descrip-

tions.of the set to include

these boundaries?

s9

< 0

A

Figure 5-1
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4"

.7;

7

(P(x,y) fx.+ 11 < 3 and ly + 11 < 4)

SOlution. All the points of a

rectangular region, with center
4

at the point (-1,-1) The

region is 6 'units wide and

does not include the vd-rtical

boundariels; it is 8 amits

high anedoes include the

horizontal. boundaries. It is

pictured in FigUre 5-2. We

note that t4e corners.of the

on are nOt points of the

e) = x.,(31) Ir, 5.01 < .1) .

Solution. Tbe Set uf points

of the annular region between

two concentric circles center-.

ed atAthe pole. The inner

circle has radius 4.9 and

the outer circle has radius

5.1 , but neither circle is
a

part of the locus, which is

illustrated in Figure 53.

Figure

0

14
5.1 11/

I

Figure 5_3

5-2

We have been using set notation because we wanted to be perfectly clear.

Itereafter we shall be less formal. We might state the problem of EXercise

3(e): Describe and draw the grapitOf 1r - 5.01 < .1 .

Example 4. Find an equation in rectangular coordinates for the locs of
. ,

all points which are equidistant from'a given point F and a given line L .

Solgtion. The geometric condition for the loelys defines a paracola, whose

_equation we now derive from trhe condition. With this Ln mind we let the line

through F perpendicular to L .be the y-axis, with the origin at the midlioi:it

of the segment determihed by F and the point where the perpendicular

a



5-2

intersects. L (If F. is in L

pidk F as the origin and leave the

further details'in this case as an

exerciae.) Finally, we let the

Py-coordinat F be. f lihere

p > 0 . ilhen F = (04) and. L is

the line yje%

Let P = (x,y) be an arbitrary

111point in the plane. Then the things

1F talked about in the geometric condition

pre the distances from :1) to F and

to L . Using the distance formula we

find that the first of these is

12 p 2
+ 7) . The second is

Figure 5-4

ly + El The geometric condition says these two distances are to be eqUal.
2

Hence

(2)
ifx-2 jp2,_ +.gi

is an equation for.the locul. This is a complete solution of the original

problem, bit a simpler eqUaio-ncen be .found. If we square both members of,

flibt and combine terms, we get:the equation

(3) = Ppy

There remains the,question'of whether (2) and (3) are equi-Valent.

The only operabdon we klave performed 'i,:thich might haver caused trouble was the

(tsquaring of both sides. But any point on.the locu,of (2) is on the locus

k of the equation Obtained by squaring both members of (2) , and hence on the

locus of (3) .
That the reverse is also true can be shown most simply by

considering a more generll

(f(xly))2 (g(x,y))
2

SO

problem. Let (a,b) be a point on the locus of
A

that (f(a,b))' = (g(a,b)) Th

f(a,b) = 1..g(a,,b) . Now suppose, further, that if (x,y) Ci.,s in the domains

of f and g then f(x,y) > 0 and g(X,y) > 0 . 'We cannot have:

f(a,b) = -g(a,b) unless both are zero, and hence f(a,b) = g(a,h) . Thus
a

(f(x,y))2.= (g(x,y)) P an d f(xly).= g ,y) are equivalent equatLons. This

result settles our EiNn for us, since both members of (2) are non-

negative for all x and y

166 1 7
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EXemple 5. A Coast Guani cutter, searching for a boat in distress,

travels in a path with the prolierty that the (in miles) if. the cutter

from its, starting'point, 0 y is equal to the,rad an measure of,the angle gen-

, erated by the ray fram 0 to the cutter. Find an equation of the path in a

suitable coordinate system. (Assume the surface of the Ocean is a plane.)

Solution. The description of the path suggests that we should use po

coofdinates, with 0 as pole and the polar axis in the di ction in whieb the

cutter is heading when it starts its search. If we do tiLs we get immediately

the function defined by the equation .r = 0 . (By choos ng the positl.ve direc-

tion of rotation properly we can make . e ive.

faio

The palh is a spiral.

Figure 575

If we use rectangular coordinates we.get a much more complicated equatton.

FUrtnermore, no matter how we choose the axes, the eqUation does not define a

function. Can you explain why not?

Related polapqUations. In writing an analytic description of a set of

points we may use to our advantage the freedom we have in choosrng the type of

coordinate system, the placement of the axes, and the units. In the case of

polar coordinates there is an ambiguity imposed on us by ,the fact that each

point now has infinitely many pairs of coordinates. This makes some matters

easy, and some difficult. If a moving point traces and retraces its path in a
A

recurrent pattern, a polar equation for the locus can represent thisTattern,

since (r,e) and (r,e + 2nn) are, for integral values of rm, cborainates

for the same point. On the other hand, since (r,e) + n). are

also coordinates for the same poiht, we cannot avoid a certain ambiguity in'

. *#
writing equations of loci in polar coordinates. A point Cr

1
) on the

curve represented by the equation r.- f(e) 'also has the coordinates



el + . If we substitute the lattbr coordinates in the equation we'

ob.*tht,the evation
1

= f(e
1

+ y) which-may be written r
1
= -f(e

1
V)

a :N N.

Tht every point of the curve repr+ented by r = f(e) is at the.samea

a t..of the curve represented by r = -f e + ir) We will call these
,

ellati9ns;

ilr
.

1 r = -f(e + d 1

\e

.

related polar equations for the curve. In some caseS thes related polar'

equations are.quite different in appearance and it-takes some experience to

recognize that they represent the same curve. On the other hand the relaied

pplar equatlions may be identical.

I

EXample 6. The 'r'elated equation for r = 5 sin e is . -5 sin e + g)

-5(-sin e) = 5 sin. e and "n the same as the original equation.

lk
Example 7. The,eelated equation for r = 3 tan e is

r - -3 tan(ev TO - -3 tan e , and is different from theloriginal.equation.

Example 8. The related equation for r 3(1 + sin e) is

r z -3(1 + ,sin(6) ) -3(1 - sin e) 3(sin e - 1) , and is different from

the or;ginal equaZIon.

Exampled? The related equation for r = 5 is r = -5 , .and is different

from the original equation.

Because the correspondences between points and their polar coordinantes and

between sets of points and their representations in polar coordinates are not

unique, we must define the graph of a polar equation .to be not tcle.set of

points whose coordinateS satisfy that equation Lut rather the set Of points

.each of which has some pair,of coordinates that satisfy the equation.

Exercises

For each of the following, write ap equation or :,taLement of inequality

of the locus of a point which satisfies the stated condition. Use the co-

ordinate systeM you think a

polar coordina-tos, gi,ve the

propriate if one is not,4ecifi.ed. If you use

pair of relatedRequations ip each ease.

17.1
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5,2 _

1. A point 3 units above the x-axis.

2. A point 5 units to the left of the y-axis.

4111414h
3. A point equidistant from the x- and y-axes.

4. A point twice as far from the x-axis as it is from the y-axis.

5. A point a units from the origin.

6. A pointa units from the point (3,-2) .

7. A point equidistant.from 3,0) and (-5,0) .

8. ,A point equidistant from (2,3) and (5,:4)

9. A point equidistant front tha, lines with equations x + y-- 2 = 0 and

x Py 2 = 0 .

10. A point whose distance from the line'with equation x 2 = 0 is equal

to its distance from the point (2,0)

.4.. A poilIewhose -distanc from the line with equation 2x y 2 0 is

, equal to its distance .from the point (2,-1) .

12. A poirit the sum of whose distances from the points (4,o) and (,4,M
N

iS 10 .

13. A point the difference Of whose distances from the points (4,o) l'and

(-4,o) is 6 .

,

\11.,. A point the ratio of Whose distances from the lines 2x

3x - y + 1 = 0 is 2 to 3 . /.

15. A point that is contained in the line through the points

5,7) .

= 0 and

and

16. A point, the product of whase distances from two fixed points is a con-.

stant. (This locus is called Qassini's Oval; it was studied by Giovanni

Domenico Oassini in,the latip seventeenth century in connection with the

motions of the earth and the sun.)

.A pofht within 3 ung(aiStance from the x-axls.

13. A point St least 5 units distant from the origin.

A point nip more than 1

A Point no more than 2

A point po nearer-to the

A ipoint no neixrer to qe

unit from tlie y-axis. '

units from (1,3) .

origin than it is to the point

origin than it is to the line y

1,69 174
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23., A poillt'nearer to tht origin than to any point on the'line x = 10 .

24. 'A point between the lines x . 6 .1 x . -6 .

\
25. A point within a circle with its center at the origin, if the radius is

"8 inches t % ." (Note: This notation, frequently seen in drawings

and applidations means here that-the radius must be at least 7.92 inches

long, and at most 8o8 inches long. We sometimes say that there is a

"tolerance" of 1 % of the stated dimension.)

5-3. Parametric Representation.

A
- In describing physical phenomena we customarily simplify matters; for

exampleNa gar on the road becomes a point on the line. In aeseribing any

motin itkisconvenient to say when, after some given instant, a particular

event occurs.t Thia is'indicated by a value o. the yuriable, t . If the 7

Motion, takes pi.age in two or three dimensions its maalysis

by considering one dimension at a time.' With a reetangul

we4 then describe that part of the moti n parallel to

X-C

y be made easier

coordinate system

the x-axis (the
- ,

onent) by indicating how it albne changes with re6ect to time, say

x pt) . Similarly we may haye y = f,(t) . Such a set of equations, in.

which the two componenta oflhe motion, that is; the1val9s of the two vari-

ables x and y are given in terfris of a third variable, t , is an example of

what is called'a parametric representation of the motion. It is interesting

Vo note that the tracking of satellites is' actually done in-rthis way.

Example 1. Two sfidents observe the motion of a hall rolling down a

tilted plane. The pl!Lne has been'coordinatized as indicated. In this illus-

tration, as ln.many physical problems,

the variable 't , representing time

elapsed since a given instant, is used

asca parameter or auxiliary variable

The use of a parameter is often of

-great value in siiriplifying the Presen-

tation and soltion of phyeleal problems.

In some problems it may he useful to use

two, or even more, parameters.

/

One student finds that with stlitable

units he can doiscrihe the motion relative

to the y-axis with the equation y - 3t . Figure 5-f,
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He may have coihe to this conclusion by notine'with the use of anstop-watch,

the y-coordinates of the points on:the lines parallel to the x.axis crossed hy

the rolling baLl,lz successive seconds. The other student, using the lines

. parallel to the ydraxp in a similar wax4 finds that he can describe the motion
\

ftlative to the x-axis with the equation x = 2t
2

These are the parametfic
,

,

equations of the motion.. If we want tO express y in terms of x we may
.

\

3'

eliminate t between these two equations \Lind Atain y =?5x . Since t is a

measur of elapsed time it is nonnegative, hence x and y are also non-

nega . Therefore, the graph On the xy-plane-will be a ray of the line

3Whose equation may be written y =

EXample 2. A plane, flying at 120 miles per hour at an altitude of

5000 feet, drops a package to the ground. Assume tAt the package remains in

one verticd1 plane as it falls and, neglecting air resistance, determine its

path to the ground.
#

Solution. We must assume certain conditions. If, at the moment of its

) release, the package.is moving forward at 120- mph (=. 176 ft. per sec.),

then it will Continue to do so at the same rate, whatever its vertical motion

may be. Under the stated conditions we assume that its vertical motion is

described by the formula
1

78'
where t represents the elapsed time in

seconds, g is the gravitatiónal acceleration in feet per second per second

(which we shall approximate as 32) and s is the number of feet of free

fAal.

We now coordinatize the vertical plane, taking the point of release as

the origin. The positive sense of the x-axis indicates forward motion, and

the positive sense of the.y-axis indicates downward motion.

A
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Figure 5-7D

Note that the grid on which the locus is:drawn has been presented in 4

non-standard way, to make the diagram easier to interPret,. As the package
-

moves forward in space the corresponding point on the graph mpves right and

crosses successive vertical lines in successive seconds. The vertical lines

290 equally spaced because,:the dorizontal motion is uniform: x - 176t . As
t

t& package falls the corresponding point on the graph moves down on the page

crossing successive horizontal lines in successiVe seconds. The horizontal

lines are not equally spaced because the vertical motion is not unfform, but

fvecelerated. The spacing was.determined by successive values of t. in the

formula y 16e- . The scale is the same on both axes, thus the diatram is.

not only a graph of our locus, buAlso a picture pf the actual path.

172
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'if wr had plotted points on 6 dif-

fdent grid, say the one to fie right,

in which the horizontal scale is differ:-

'ent ;rom the vertical scale0.then.the

e.

graph.woUld still be. an aCcurate, repre-.

sentation o the relatlonships among:

the variables, but it would not be an

accurate repreaentation of the-path.

Since we use the word path here in a

.specia1 way, wr define it to be the
A

of positions actually otcupied by a

\\real object as it moves in real space.

Clearly, a path may be represented,by

a curve in a great nu*er of wjt
.d2fferent amices.of coordinate syste

In many physN:l problems wr are

concerned with the relative positions

BO
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Figure 5-8

of objekts as they travel on their .4. 4 4,
\

..

respovctiVv.paths. 'If theibloat is:to hit.the ball, it is plpt enough for their

:paths to cross, Azy mustle at.the Crossing point at the samAime. Shipsi
1

!
paths may cross safely, but a collision course woidd bring them to the same

point at the same moment. Thq captains of two ships at sea are conterned with

When and Where\ the ships are closest to each other. When wr must consider

A

time and position along a. path, we neeq some relationship involving thecie.

quantirties. Thtse are most readily presented in parametric form.

'I. Refer to Example 1 and make a chart like the one below, showing the x

and y coordinptes fo Lrieprai vriiue s of t f om t 0 to t 10 .

23 r

4 8

V

I

.

10
.0

\

16

_

Y

...

_

,
,

#
Make,a similar chart for Example 2 of this section.

3. "'ite parametric equatrons for the position of a point

starts on the y-axis and moves acrosa-the plane at the

a, second and remains

P whi ch

rat.,e of' 5 uni tsr

always units above the. xraxisir
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:

Writell.grametric equations for-Ithe,position of a point ,P = (x,y) which,

etai-.ts on the x-axis and moves uniformly on the*plane dt the?raie of 2

-units a.second, and remaina always 6 unite to.'ne ±eft of.the y,axis
/

5. Write parametric equations for the position of a_w,int P4= (x,y) .leh
4

starts at the origin, goes through the_poirlt (304) ten seconds later,

and continues to.move uniforMlralong line OP at that same rate;across

the plane. F1n.9, rectangular equations.for itsalocus.
1.` .

arametric equations for the position of a point 1)4. x,y) which

uniformly a1ohei a line.across the plane, and tiate's 5 secOrais to..

\ go rom (-6,1). to (i,25) .

,

7. ,Paramet.ric equations for the path of a i)oint P (g,y) arc. x = t

:where t indicates time inaeconds. Discusl tite motidn of the

ppint in Vhe first ftve seconds: Make an estim4e, correct to th0 nearest

.1 unit,. of the digtance travervd'in that time.

. A point P (x,y) travelS along the.!Ine represented by 106 - 3y + 2 = 0

at'the uniform rate of, 10 -uniir. per second and passen tSrough (11)

when t = 3 . Write parametric equations fonits pbsition at any time

t .4 -Find its position when t = 0'; whtn'.t = 10..

A point P ().(,yr traveltomalong the.line represented by. Px + 3y - 6a= 0

at a uniformrate Of 5 units perirecond and crossos the x-axis at the

time t ; 0 . Yritte parametric equations for its position at-any time

t .

. . .

! 10. A pOint V =.(x,y ) moves'uniformly on, wlineacrocs the plane. Ickt goes

through (a-._ ,0 at time t and.. (c,d) at time t . Write parametric
.. 0 '

.1 -. .,

-equat4ons-for its position at any tine t .

4 V
.

' 11. 'A point is moving along the x-axis, its position 4 time t (sec) given by

x -.cos t . 130"ore you-do #ny comAtation try to deuribe the way the

so

.7)o1nt Moves.. Me_ fnt!tion is Crequenticassociated with-angles

A rotation, tut thfre is no such motion litre. We must now se the A
\

cosine an a particular real numter n+nction,-whose values, Co , main
, .. , .

0 .?)c < 1.Y0 are.given in 'Palle II. The- heading "radian measure" for

,4 that taLle indicates the,,mbst requent_ klt L.,y no'nenns the only tkse for
,

8 theL trigonaletrib functions. Make.a,tatle t
f

'
6r the'positionC of the -%,

'point; fo/4,0e rirst :1 se ,, at one second 1nt6rvals. How would you
.

j

tte; i

'- find the position pf,thelprp at the end or Ow minute? one-hour? -t

. -
4
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The vertidal. sition of.a point is givtn by 500 26t2 where` y

reprisents al ude in feet sand t elapsed time in second's. Before you

do any computation try to.describa the motion of 'the point. Do you know

any physical interpretati:pnof this motion? Make'a table of the position

.ofie pointt at.one second intervals, for the first 10 seconds.
W

,4
Refer to tke previous exercise, and answer the same questions for the

relationship = 120 + 16t24

14, Refeit.o'Fbcere4se-11-,, ;and' answer the 'same queSt ons ;for the relation,'hip

x = 4 sin 2t

15: Refer to EXeXisde 11, and answer th'e same questions for the relationship.

x 2 - cos t 4

10. If themtoints of Exercises 11 and 15 were on the s'ame x-axis, find a time.

and place tet which they meet.

.5-4. Parametric Equations of the Circle an4 t'he Ellipse..

. .

In many physical situatfons an 'important role'is played ,by, a fixed re-
.

ference point, such as a source of light or radiatiOn or a magnetic ole. The

associated phenorripna, sometimes called., focal or radial can be described with

polar.coordinates or vectors.. We should use the coordinate sysem,and para-

meters which .seem appropriate. When rotations are involvtlii it is usually

helpful to une as a wirameter, e. measure.a. theangle of'rotation from

a fixed initial position-

Example 1. A point moven arnund a'circle at coiastant speed. 'Find analy-

tic-conditions for its path.

Solution: Suppose, as in the

liagram,-the point starts from A and

moves counter-clockwise. Ito position

at-any poin P is given by t.he

rectangulv COOrdinar (x,y) , Or the

equeivaleni,s. (r CO5 , e) ; that

si

e

or (
.

r sin e

lisp arc parametric ns'equatio fOr a

.ircle.
I

Figure !)_o

,
A

T.1



We may-express the fact the point,moves around the circ1e with constant

speed by saying either that it moves along the circle at so many inches per

second, or that the radius IT rotates about 0 at ao many revolutions per

minute. Of course, other units may be used. The first method Of expression

is important in mechanical problems involving, for example, gearing, belting,

ridispeed, and so on. The second method of expressiAi constant.speed, which

concernS the amount of_tUrning done in a unit or time, is significant in

.titing mechanisms such as are used in automatic washers, invelectrical theory
'

'involving alternating current, which is related to the positiongl.of a turniack

:armature, and,in the analysi of many other phenae"na which are periodic, that

Iis which repeat in successive time intervals. '

In this latter interpretation it IS customary to use the Greek letteri

to represent the angular velOcity, usually but not,necessarily trms of -

radians per unit time, ;us, if a wiieel turning at theAvite of '300

revolutiOns*per tinute;'it.haliansitillar velocity of 1(300)yr raVans per

minirte, or' 10g. radians per second; that Is, 3Orrpm) or (1)..

(radians/minute),'47 107r (radians/seeoni).

If the point P has *constant angular velocity r then its u
e

position e is given by tnt . The panametricaequations above become

x = r cos Eut

1 y r nin ait

These are elluations of the path of the point.
4

If we eliminate the parameter,by squaring the metbers of eac4 equation and

adding the'corresponditag me4ers of the new equations we obtain

x + y cos at + sin at) , or x" y' = r
22 3-2

of the.path in rectangular coordinates and no longer takes n

is re sOnts"the locus
,

unt of the posc.,
1

'tion Of the point at nny partic4ar instant. -

ef

Example 2. Two Pointb trav.el on the same c1ç. They Start at the same

time from.diametrically opposite positions and travel in opposite irections,

1 the first at rotations per-second, the second at 3 retationsperAk.eqpnd.
'f

1,",ind analytic conditions for their paths., an4 the times and positiOns "ft which
. a .

they coincide.

Solution. Ofer to Figmre 5-,.) If the f1so1nt a

and goer.; counterclockwise, its equations are

i.x r cos,41rt.,

1 rd'sin 41-rt. ..

r(6 1 s

s at1; A 0)0

44-



0

5-4

If the second wilnt starts at B = (..r,O) and goes ClockWise, its equations

are

< x =,r cos(v 6vt).

y r sin(*.- 6gt) .

ih
If t = 0 0 the positiOn of A is given by (r cos 0 r sin 0) ; there-

.

'fore A. (r,O) .as indicated. .At the'same time (t = 0) , the position of .

B is given by (r cos v r si;p.v) tilereforp B = (-r00) , as indicated.

As time elapses, the angle for the motion of A increases, whil. the angle

for the motion of .13 decreases. As A and B. rotate, Only.their angular

'positions Are changing, and the rates of these angular displacements are 4v.

.radians per second and -6v radians per second. At any ins4ant the difference

of these angular displacements is called their angular separation. It is

cultomary to give this angular separation as the least angle'between the

respective radii,to the points. Thus'we use an angular separktion of 4

radians rather than 13.5v radians.

Since our two points start with 'an

meeting will occur when their angular di

tions add-to v ; that is, when 4itt

angular separation of v , their first

splacements froth their st!arting posi-

(t = * ;, :st = Successive

meetings will occur after this when.th

to 2v 47t., ov , i.e., when. 4*

when t ,3 .5 ; .7 , . That is,

and every. .2 second thareafteT.

r additional aagulp.r displacements add

= 3v , 5v y 7g y fa. 0 Lee,

they pass.each other in .1 :second,

,
TO find the corresponding positions, we need only substitute these-values

riof t in the equations of motion. It Is simplest to obtain first the suc.

dessive angular positions e .

L "e for their passing points.
4 2 ' ,

10.

If

If

= 72°

1.271 2 6g

- 360°
.

The rectangular coordinates of these positions are.given, say.for r = 10,

= (10-cab 72° y 10.sin .14) P
2

(10 cos 216° y 10 sin-216°).;
1

p (16,cos 360° , 10 sin 360°) These are equitralent t
3

1)1,.= 0..9(.309) 10(.9,1)) ; , If(_.788)) .p3:.(k1(1) , 10(4;

.177 182'



, In usual reetangUlar forp),rounded ta:hundredths, we have:

(3.09,9.51) ; P -6 09 88) -.17
3

= 0_0,0) ;

/

.&ample 3. (Refer t6 Examges, abave.) Suppose, in the previous example,

'the points start as-before but travel in the same direction, with the same ratea

,as.before. When and where do they pa

Solution. The equations o..motion are n :

x = r dos 4At .i cos n .47 Ont:

and A -

,

= r sin 4At; r sin (m + 6.nt)

The meetings (orovertakings) will take place now ken the differennee of

thei4, angUlar displacements>is Pff ,'4A , 6A , The fir.,t, meeting will

take place when m + 6nt kitt. Pm. ;-that is, when t,= .5 sec. After thisi,,

successive-meetings WIll ocelalk when n 4At = .4A , 6A ,Ar. , ;

th4t is, when t 1.5, 2.5 , 3.5 , 'TO find'the corresponding angular

positions we proceed as in the previous problem and ftnd 0. _?Yr OS), ='66n
.

etc.; that isj all overtakings will take place 1 second apart, at point A ,

starting at the end of the first half-secOnd.

1.

ExaMple 4. A point is eotating uniformly aka circle iiirf'adius a , with

its center at'the point (b,0) r Find analyticTOnditiong-for its locus.

Fyolution. Suppose the uniform dngular

vcicit,y, expressed in radians per second,
.

is a) . From the hypothesis and the

diagram, we have

x b.+ a cos e

a sin 0 ;.

x a cos cot,

y a-sin cut .

These arc parametric equations for the

locus. The-Cirst equations are posif

t-,Ional only, the secor0 eqUsttions relate

.thepe positions tO time,a descrille the-

pat,hoft'thei

We_ may,e1.1. iriate the parameters a) and -t.

x

a
c os 10.)t 'sin cut, 7

1 S3
Li

Fi gun! 5-1 0

r



- therefore,

or

(x - b

)

2 -( )2Y--E-- + . cos
2
mt +-Sin

2
cat . 1 ;

.2 2 2
b) + y =a

5-4

This last equationtis the one usually given in rectangular coordinates. It is
. .

an equation of th Ipcus offthe point and takes no account of its position at

any particular moment.

:

The ellipseswill be discussed in detail in Chapter 7., but we derive now

its analytic repressnta6.on in parametric form. We start with two concentric

c igr(9.es, the smallest that'will enelose.the ellipse, and the large4 that the

ellipse..wdll enclose, as illustrated in Figure 5-11. Suppose their.radii are

BP and b with a > b . We describe now a way in which a draftsman can locate,

as many points of the ellipse aslie needs to draw A smooth curve through them.
/

Draw a e through 0 , meeting the circles at A and B respectiUely.
A

Through A .1).- B the lines parallel to the y- and.xes respectively will

Meet at point of the ellipse. ..For all *0 have x d(010). = a cos 0

and y = d(C,P) = d(D,B) = U

The equations dre

x - a cos 0

y = b sin 0 .

We may eliminate 0 as follows:

cos
a '

. 2 . 0
'2

--5- + --ff = cos 4,-+ sin 0 = 1 ,

b

or,
x7
a

whach the:lual equation of an

ellipse fn rectanguldr coordinates. Note that the parameter 0 used ,here is

not the angle between the positive part of the x-axis and the radius vector

Figure 5-11

OP to the point P ; that is, it is not the aRgle used in representing P ing,

polar,coordinates.

It should be lognized that we slect a parameter in various ways to

fit a variety of sitioations. There is never a "unique way to do this, so it is

..inaccurate to refer to the parametric equations of .... Rather, we have

"a parametric representation of'..'.",with the understanding that, we'have A.N4e

the choices of co4stant- and variables that best suit the hypothesis-and our

plLi of-approach to 15%olution.
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EXercises 5-4

1. Write parametric equations for a cIrcle of radius 10 and with center at

the origin.

. 2. Write parametric equations for the path of a point.around the Circle of

Exercise 1. Assume that it starts from the 3 ot-clock position and

rotates tlockwise at the rate of 4 revolutionerper second. 4

fif

3. write parametric equations for the path of a point at the ena,of the

minute hand of a tlock during one hour. Assume the length of the radius

to be 6 igches and that the point stiirts from the 12 o'clock position

to which we assign the numbers 0 and 60 . Use minuteslas meadres cf

time.

Write parametric equations for a circle with center at -(4,0) and radius'.

3 .

Write param uations for a circle With center at (0, and radius

Write pametric equations for the path Of a point moving around the%

circle/of EXercise 4. Ass t it Itarts from its lowest point and
m

movea/clockwise at 2 rps

7. WriXe paramtric equations for 'the path of a point moVing around the

circle of ercise 5. Assume that it starts from it) highest point and

pio-ves counterclockwise at 3 rps
-sr

, Describe in words the motion

ations given below..

= 4 cos Irt

= 4 sin gt

9. x 6 cos., (nt +

(Trt +

A

of a point whose path has the parametric ,

Assume t ienotes,e1apseci timq in seconds.

fik

10. j x = 8 cos ( - 37ct)

Lar sin (it - 3gt,)

.3/r

s x 10 cos (--fr + 107rt)

10 'sin 10Itt)
f

111
180 1535
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12. i x = 4 + cos.6nt,

1 y = sin'6gt .

1 . j x = COB

A y = -3 + sin 8gt .

A. x . 2 + coa-12e,

i y 5 4. Sin 12nt

15. lx=a+bcos 27ft,

l'y = c + b cos 2gt.

16. x = p + q(cos.2nirt - a),

I y = r + q(cos 2nAt - a).

*

17.: The equations of motion of a point moving uniformiron e;:circular path are

x = 16'eos

1 y = 6 sin 4gt.

'(t in seconds)

(a) .Describe its motion in words.

(b) Make a.table showing the eoordinates of the point at the times

t 6, .1 ,, .2 , 1.0 second.

...(t) A second point travels on the same circle in the *Arne dii-ection at

the Same rate, and starts at thp same time, but from the point on

the y-axis above the origin. Write equations for its motion.

(d) A third point starts-at the same time and place.as the first point,

.Init travels in the oppoSite direction at half its speed. Find

equations of motion for this fhird point.

(e) knd the times ahd places at which the third point meets the first

point, as wehone in Examples 2 and 3.
0

(f) Find the times and places where the third pOint meets the second

point.

Three bicyclists,A,B Care equally ipaced aroundaone mile circu-

lar track, (say at the 8 o'clobk, 4 o'clock, snd 12 o'clock positions,

respectively). A and B 0 who go clockwise, can ctele the.track in

3 minutes and 4 minut; respectively. C., who travels dounterclock-
a

wise, can circle the track in 5 minutes., They start at the same moment.

Write equations of motion for their angular pOsititms..cm the tradk

.at any time%%,. after they start. 1!

(b) Find, and illustrate their positions at the end of each of the firSt

10 minutes. 10

(c) Determine the firet 5 meetings; who meet; yhen, and where?

(a) When and where do all three meet, if ever?

181 1 86
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19. A, point s at A (Figure 5-9) and moves aounterclockwisq at 2 rps.

A secon point starts at position , which you are to,find, and, moving

clockwise at the same rate, passes the first point each time they cross

the Y-aXis. Write the equations of motion for this second po4.ntf

20. Four points,'T 0 Q R S are equally spaced around a circle (Figure

'5-9), with P at the 3 otclock position, Q tat the 12 o'clock position,
a

at t4 9 o'clock position, and S at the 6 o'clock position. P and

.Q move-7counterclockwise, R and S clockwise. They start simultaneously,

and all meet for the first time 10 seconds later at Ihe 10 o'clock

positidh.

0 (a) Write equations of motion for each point.

(b) 'Wben and where wila all four meet again?

5,5. Pa tric Equations of the Cycltid. p

.11

A curve frequently encountered in physical. applications is the ccloid.

We introduce it in an example.

'.Example 1. .A wheel 0C radius a feet rolls in a stra'ight line'down'a

flat road. Find analyticfonditions Air the path of a point P on the rim of

Ahe ;411e1.
0

Solu'ion. Somethingperhaps years of experfence--suggests a parametric

. repreperitatjon.

,

FigUre 5-12

182 1 S
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Let the line along which the wheel rolls be the x7axis, and let the

oi.igin be a point at which P touches the road. Let the positive direction

on the x-axis be the directiAn Which the wheel isbrolling. Finally, let 0'

be the radian measure of the angle through which the wheel has rotEited since

P touched the road, with 0 positive when the6center of the wheel has a

positive abscissa. SinCe the whe91 is rolling, not slipping,: the length of

bff is the-same as the length of PG The defiaition of radian measIli: gives.

this arc length as \aN., Hence,

x = d(OpT) = d(O1G)( d(13,11) = -fftlf - a sin 0

1 y d(,J) = d(CIG) = a - a cos .

(1)

We rewrite thesemlftrametric equations of' the cycloid

j x= a0 - a sin 0 ,

-acosci5';
4r

x = a(0 - sin 0).,

a(1 - cos°$) .

If the wheel were rotating at the rate of ai -radians per second

0 = wt and Equations (1) b'ecome

x,= jt - 9

y - a. - a Q05 .

a
A

NA4f-.. Ala AM.

then

Exercises 55

A poit r (x,y) on the rim of a wheel'with a inch diameter traces

:,t4,4e..1.),rolls along, trle x-axis. Write .parametric equations

1.LJ2us oT P .' Find rectangular.cbordinates for P , correct Cu

ehtho, corresiAonding to values of e from Ou to 0 at. intervals

1.11'

0
a earefiii drawihr of the graph.Make

One. arch of a cyoloid will just fit ins ide a recta1e b units high.

How widejs. tat rcx4anglel C.:noose suitable axes an4 thettwrite para7'.

metric ecluaLions t,he cycloi(1.

A wheel wi:th a

ifttes per seeonA.

%
(a) Choose a sul falla coordinate sys em and wrItie-parametric (>11,1a!:onr

Of .t.ne mo'ion of a point P (x,y) en rhe rim.

(L) Fl ri rectanty,.ilar c!oorAinater, for the posi lens o.f P at timer

ilrch diameter is N, line aion .rt.0.1..!r

C - .1, .,i , .1 j , .4 , .5

(C) -FiLd the time and place aL whi

its pat41

rit.111 C reaChcs a. hich p,,Int on

163
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,. An automobile treivelinea,long a straigA and level road at 30 miles an

hour has.a wheel whose dUter circumfere ce is 66 inches.

(a) Make an,accurate scale drawing ofD e arch of the cycloid traced by--

-a point on the circumference.

(b) Choose a., suitable coordinate ayirktem and write parametric equations

for the motion'Of a point op the rim of the wheel. Use a minute as

a unit of time ,and
1

as an approxfmate value for Tr

k

A

Challenge EXercises for Sgctions 5-3, 5-4, 5-5

(Refer to Figure 5-12.) If,,as.in the °case of a cycloid,. Nic consider a
.

wheel of radius a rolling down a straight flat road, we may consider the'

path of a point P not on the'rim, but along a radius 17 y at a distal*

of .1; 'feet from the center: We dittinguish'two cases: b > a and

b <'a The locusJin the first case,is called a prolate cycloid, and

'in the second case a, curtate cy cloid. Figure 5-13, illustrates a case
0

which leads to asprOlate'cycloid whose parametrii equations you are asked

to find.' A part of the graph is shown in'Figure 5-14.

Ammar

Figure 5-13

1 S9
184
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This figure 411uS.trates a case in'which b 4.5a . (an you find4the

ordinate of the point Q in which the graph\quts the y-axis?) The stu-

dent is urged to donsider.the cases: b 7 2a y 1)'= la and i\c) draw

some geheral conclusions.

2. (lig.e cAtate cycloid. (Refer to Figures 5-13i 5-14.) Find the locUs of a
e

point P op theradius CP' of a circle as theicircle rolls%along a Ane.

.ob ; radius . OCIF1 a and b <.a Choose a suitable co:

ordinate system and draw an arch of the graph.of a curtate cycloid for

the case a.. 6 b = 4

3. A circle of radius a- rolls,. ithout slipping, on the outside of a

circle of radius b . .Find an analytic representation of the locus of

a point P on the outside circle.

Discussioh: We illustrate tle
A

case a < b , and suggest these
0""..

relations: length of AB = length

of PB a0 = be .

c =a + b) cos 6 , a +,b) sin

the sum of the,measures of

4.1 is or 90
0

d(P,D) - a sin * ; d(C1D).7 a cos

We urge the student to experiment

,41th_the special cases a_- b

1 1
a = --b a - 7Tb . Such curves

2

Are called epicycloids and have

applicationt in astronomy and in mechanical enginedring.

185
.190
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A

. (Refer to the preAms'problem.)1, A circ1of tadils a rolls, withodt

slipping, on the inside of a circle of radius b (a < b) . Find analyti

representations of the path of a point P on the circumference of the

inside circle. .-Such a path is called a hypocycloid. The studentTs urged .

1 1 1
to experiment with the 1:1ecial cases

.

a = 1Tb , a .7Tb , a - 751). In both
.

this and the previous exercise th ptudent is challenged to anOwer thils

question lathout performing the experiment: If afib and wy ;lake a

complete ci.rcuit how many times has the smallei circle rotated on its ewn

aXis?
loylAm.44. -

A circle of radius a has as center -C = (00a) . A chord is drawn through

any point D = x a
1 A

) of the circle and extended to meet;.at , the K
4 1

tangent to eweircle at A 1,the

endsof the diameter frIbm 0 . QR

is drawn parallel to AO y and a

line is drawnsfrom D parallel

to .14.9 and interseeting QR idat

P = (xy) . Find equatSons of

the locus of P as the.point D

moves on the circle. ,Sketch the

locus. curve called the.K1tch of Agnesi, was studied and named by

a mathematicianof the eighteenth ceatury, Maria Gaetana Agnesi.)

6. Find ari equa ion Of Vie locus 'of a ppint which mo*es so that*the sum bf

/
the squarevof its diStanees fram two fixed points is a constant, which

OR
we deal 2a

2
Describe and sketch the locus.

7. Find an equation bf the locus of a point whidh moves so that the sum of-

Figure 5,46-

the squares of its distances frmn the verticts bf a square is conAant.

feccribe the ldeus.
. 46

Find ap equation of the locus of a point wW.ch moves so that the sum of .

tite squares-tf its distances,fram the lines containing the sides of a

square is constant.

A line drawn parallel.to the 4,de AB of a triangle ABC meets AC in

R in E. The lines Z. and: 5 meet at ,P Find dn equation

of thelocus consibting of all such points P 4 (Hint: Let 5° be the

x-axis and iet C (0,c1 3 wtere c > 0 . Introduce, as a parameter,

t 0 the distance between DE and the x-axis.)



.10. ;01eetC 0. and Q be distinct points. Let L be a line through O. and

let P be the foot of the perpendicular to L ',through Q . WhA is the

locus of "P as L: rotates around 0 ? (Hint: .116e the slope of L as

an auxiliary 'variable. Remember that some line6 don't have'slopts.. Does

Q. lie op the locus?)

11. A circ4e.df radius, a .has ite

diameter OCA---"atong the polar

axis.. From 0 a ch&d .71.7 is

drawn and extended to meet, at 8,

the tangent to the circle at A .

Ffnd equations of the locus of
4..

P 0 a point ort, OS such that

.d(P,B) , d(OR) . Make h sketch of

the graph. (This locus..is, a'

. Figure 5-11
cissoid, a curve studied by the

Greek mathematician Diocles, whci lived a eequry oc so after Etcrid.'.You

. may,learn-something more abbut it when-you ftudy 064sign

'12. A fixed line 117 is perpend4u1ar

e

to the polar axis a(poirit A 2 a

ungts fr In the pole.. A lthe is

drawn through' 0:meeting. BC at

R A fixed length f is marked

off from R on this line in both 4. .

direCtions-locatiang the points

/and P' . Find an equatilon in
-A

coOrdinates for the locus

of -P %and P' (Tys eurvel

called a conchoid, was studied by

the Greek,mathematician Nicomedoc

about two centuries B.C. - Tt can

i. 1,e usedin the trluevtion ,of an

an le. Try to discoyer how.')

al!

187 f 2
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13. Involute pf the gircle. A string

of no thickness'is wrapped'around

a,fixed circle; the end of the

q'ring is at A We unwrap the .

string, keeping it taut and tangent

to t. rue. (PT is tangent A ..

ciro and d(P,T) ..length of

AT), ,7irid anelytic oonditiObs for

the graph.of' P . .Tbis graph.is.

Aualleethe iffirolute of the circle.

Try to:generalize tbia idea, and

sketch invOlutes for an'ailipse,-

a

models' Wiitg which you-can:draw involuies. Draw te invoirute 01ra sagare,

a parabola,- every cuive have an inVolute?' Make same

Figure 5;19

x
r4., Suppose a.fixed circle vithad/us s -is internally tangent to a'cift ,

with radiusb (b > a) . parapetridgequations for tH6 locustof:a

. point Pt on ttle outer circle as the outer circle rolls around Ihe Inner

.circle iithout slipping. 4 4.

mechanical.

#, Fl.&re 5-20

5-6. larametric Equations of a Straight Line.

C.

4 ;

t e

f t

4

*

Parametric representation, which we found so useful rs the'complicated

cases of tlie previolis sections &ah be used to illuMinate'and'eitenq 'the dis-
,

cupsion of the straight line. Some of the exercises of Section 5;..2 haxe

already introduced you to the ideas Fd metnods we extuaine' nolf in more detail.

The foundations f6r this discussion bave already-been deieloped in dhapter 21

particularly in Sectign 3, where or find these equationse.

: (1.) 7

X = X0 + t(x1 - x01)i
. '-. .

\. Y YO ff. t(Y1 YO)

.

, 188 p *
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5-6

ye recognize that the quantities x
1

x and y
1

y .are directidn.
- .0

nulbers obtaindh from the 46Ordinates pi the point po =:(x6,yo) and

(x1,1:1)/ ,Thrrefore, we repreaent them respectively by \A .and q, and-
.

. rewrite E4ua4iona ) as

= It p

1 y = o +, mt ;

We recognize:that 't is a pdrameter, and that these equations are pm,ra.-
.A

mettic.equationsattieumetairoughthepointspo.andP.Ndlich we assume
a.

to be distinct.
I

if: xi 7 x0 thert yl. )140

a

and (?) takes the form

o.

IWhat is the geometrie'version of.this hypothesis and conclusion?)

if_ y = y0 0 then xi / xo , and. (2) takes the form

-
3c0 4. s,

Y =,Y0
ft.

(What is thegPtmetric veTsion of this hypothesis and conclusion?)'
-411

r
Exanle 1. Find d pare:metric representation of the line,through (2,0)

E.122c1 474)3)

Solution: We An choose either point ma Poe. If Po = (2,4 then

xi - X0 = 4 4 yi yo 3. and we get the representation
t

)

x = 2 - 6t

1 y = 0 3t .

,The -dther choice for P ltmds to the representatilon

= 3

A parametric representation of a ling sets up a one-to-one Ariespondence

'between the real numbers and the points on a line in the.plane. We ilpstrate
4

bepw the co7re:pon&nces.established by ..the parametric representations we

found for the line in EXample 1.

16§

1

1

41.



-40)-
t = 0

'V

iigure 5-21a
4

'Figure 5-21b

EXample 2. Findthe fnterseetion of the line through (4,21 and

(20-4) and theline throug4 (-3,-1) and .(-4'02)

Solution: The lines may be represented Parametricalix as folio :

-x 2 -3 t

It
y = 2 - 6s y -1 + 3t

We vial to find all points which lie on both lihes. Nov the potnt (x,y)

lies on both linetwAS and only if there exist values s(; and t, of a:

and t such. t t

y - 650 = -1 3t0

All such values'of s and t can be found by solving simultaneoualy the

equations

-,2s = -3 t

2 - = + 3t

The only solu ions are s = 2 t -3 . Substituting these in eitherp1r;, .

of parametric equations, we find'that the only point of intersection is.

A
It would hsvdObeen quite correct to use the same. letter for the

;arameZ4er in ihe paraetric representations of't Li arid L2
.0

woUld have led to difff.culties later in the i)roblem. Do you 1514)0xy? Can

you fiqd another method of getting aiound the difficulties?

r thi s

.
I

i.
195.
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0

1

5-6

In previous sections,of this chapter we related the parameter t to

elapsed time. In.sueh cases the parametric equations gave'us equations of

hotion of the point 13 . The gragh of these eqUations vat; directly related

to therth of the point. Exagle 3 shows hate leo approadh cpn be used for
V

the line.

A ball is rolling along a level surface in a str4ght line
with constant velocity. The' surface is provided with a paYteiian coordinate *

system with the ftiot-'as the unit of length. At 10:00 a.M. the ball is at

(4i2) while one seond later it is at c2,-4) A. sepond ball, also rolling

along the level surface in a straight line with a constiuht velocity, is at

(.4,2) at 10:00 a.m., at (-3,-1) pmeecond later. We ask wheth;r the

tvo balls will collide. In other words, me wait to know not whetieritheir.

paths intersect but whether, if they do, the two balls are at any point of

intersection at the same time. We assume, in order'to simTlifi the problem,

that the balls have zero radii And will collide only if their centers

coincide.

-e

Sautiop. The path of-the first ball isrepresented by.the equations

FUrther, if a is

the equations also

s = 0.-(10:00:00 a.

(10:00:01 a.m.) we

at 10:00:00 a.m.,

would trivel

f x = 4 - 2s ,

1 y = 2 - 6s .

the number,of seConds which have 'elapsed since 10:00.a.m.1

tell us where the ball is at any time. For if we.set

m.) we get x . 4 and y = 2 , while if we- set s . I

get x = 2 "d y = -4 Further, id s. seconds starting

an object whose motion was represented by these equaiions

02 e 2) A 4- 36 s = 217 s

feet. ThusAte distance trave4ed is a constant multipte of the time taken
'

and the speed is cdtstant. Simalarly, the motion of the etecond ball is

desCribed by the equations

-44 t
y = 2. 3t .

1 91.
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Our problem is to find out whether the abscissas of the positions of

the two bailor and thd,ordinates0 drefever sisultaneouslyl (s = t) equal.

In other words'w;. 4.1 Whether the gystem of.equations

14 2t = 4,4- t

(2 6t = 2 - 3t .

has a solution. Clearly no

Thus the balls do not collide.

since this pair is equivalent to the pair

= 8

13t = 0 .

If direction cosines are used in &parametric representation of a line,

the paameter t has an interesting interpretation. Since

el(POIP1

the absolute value of the

point P 'frop Po..

2. ,

xo) ky yo)2 = )(2X t
2 22

* 11, t =1t1.0
.

parameter is the distance of the correspon#ing

Exampie 4. Find, dh the Line through P= (1,5)

points which are 3 units distant from Po .

41-41.

Solution. Directionalumbers kor PoPi are 4,3) , and direction cosinei

can'be'taken as(:14. 0 may then write*parametric equations for P0P1 in
400.

d P
1

(5-P 8) two

termeof di,rection cosines as

The substitUtion' t = 3

x -L.

y 3
t

5

gives the coordinates of both points,

- 5 or
. 5 ' 5 '

(3.4,6.8) and (-1..423.2)

era,
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Exercises 24. #

and two parametric representations for each lioe tfiroUgh one of ihe

following pairs oi points, each. wiry; boih'possible orders.

(a) S5,-1) (203) (a) (1,1) (2,2)

(h) (0,0) ,

(c) (2,-3) (2,3)

(d) (-1,4) ; (-6,4)

(f) (-14-1), Ci,1)

(g) (1,0) (0,1)

(h) (2,-2) 01-202)' a

2. Draw the..mph of each of the lines in Ekercise 1, plottiai; on each,

the points-correspdnding to the values -1 0', 1 , and 2 ,of ihe

parameter.

Find the intersection of each of the fól1owingiog6is of lines. When the

lihes do not intersect, what do yoU notice about their equations?

ix . 4.-.2t

13:: -6' 3t

ix . 4 4- 6t
A

ly = 4t

. -2 -

ly =r + 3t

Find a pair of parametric equations pi the line I. with equation

2x - 3y tl = 0 .

Let L have"i.he parametric equations

ix
xo + itH

lY = Y mtO

4
-

Let P1 . (xl,y.) and P2 . (x2,y2) be the points'on L given by t

C6' %

and. t = t2 , respectively.* Prove that .d(P1F2) . I m it2 - til

6. A baIlls rolling on a level fibor along the lime through (16,2). and

(4,7) 'and in the directipon frdh the first point towards the second.

(The unit Of length4s the foot.) Ito speed is 26 'feet per second.

Find parametric equations for its motion, measurtng time from the

instant When'it is at (16,) .

"IR
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7. Let S be a set of-points,in a plane. A p6intr P is sometimes called.

a center of S .if S is symietric'about P A paramet;ic represents.

tion of a line may be Used, to prove that a poiht is a eenter'of a set of

points. Let S be the circle with equation x2 + y
2

= 4 . Any line

through the origin has a parametric representation x = 2 y mt

with /%2 + 112 = 1 Substitaing these expressions for 'x and y in

.the equation of .the circle ye get

\22

Or t
2

= 4 .
+

Thus 5

Since the answer is Adependent of -X and J1 every.line through

the origin meets tbe circle in the points given.by t = -.2" and t = 2 .
4

These are equidistant from the origin.

(a) Show that the ortgin is a center for b2x2 +
a2y2 a2b2

(b) -Show that the origin is a center for i= ax3 (Diseusa the case-
1 wwhen a > 0.and the case when a < 0 .)

(c) Show that the ox:igin is a center for y
x - 1

8. A set 6, of points in a plane is called bounded if dere is rectangle

;which contains S . Prove that4a bounded set in a plene hia at most

one center.- Is this also true for unbounded sets?

'IN.nd, on the line through Po = (1,5) and P/ = (5,8), two poirkts at

unit distance from .
1

1

10. rind, on.the line through A =7(-3,5) and B = (0,9 two points P and

Q such that .d(B,P) = d(B,Q) 4 5d(A,B)

41.

5-7. SammarY.

We have investigated the relations between certain geometric and algebraic

entitles. The geometric objects Were sets of pointsmot, as We have aaid, given

to us in a basket but determined by certein conditions or descriptions. The-

cotespondinealgebraic expressions Were statements of equality or inequelity.

The relations between them were approached through a coordinatizatiOn of the
0

"space" in W4ich the sets were presented to 6., 'Then our kaowle_dge and in-

genuity and experience led us to an algebraic docription of the set, in the

terminology of our/coordinate system.

194
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We have khbvn this process in detail in'a number of eituations. We have

applied parametric repreentation il\sithations involving inguIsw displacement
4 4 4

and motions along a circle or line. \If a set of points has any spOial pro-

perties orgeometrit appearance, how is thks reflected in ite analytic repre-

sentation? If, tor e le, the set 8'; points is symmetric in any way:could

we tell tHat fram its equation? If, on the other hand, some analytic repre-

sentation shows a particular algebrait *oPerty, what is the"geometric counter-

part? What would be the geometric effeCt of imposing certain restrictions on

the domain or range of the vatlables tha*-appear in the analytic reprolenta-

tdons? .:
In our next chapter we 4111 investigate ,in detaiAany such relations

-4-%
between curves and their analytic.representations.

Review Exercises

1. We describe certain sets of points. You are asked to kive an analytic

jc-

description of each.

(a) Alf points equidistant from the

(b) All points equidistant from the

(c) All pbints equidistant from! A

(d) All popts equidistant from., C

(e) All points at distance 3 from

(f) All points at distance 3 irom

(g) All points at distance 3 from

(h) All points at distance '3 from

(i). All poirits at distance h from

(j) All points at.dilstance p from

x- and y-axes.

points A -='(520)

and C

= (5,8) and B
4C = (5,8)

(k) All points' at aistance d from

lhe line x

ov = -2

.the lime 3x - 4y

the line X = k

the line y = q

,ahd B =

(5,8)

11,0

7 = .

the line ax + by + c = 0 .

u,o) .

(1) Ap_ points'twice as far from A - (5,0) as from B (11,0),

(m) All poi'nts equidistant from the point C = (5,8) and the'x-axis.

(n)''' All points equidistant from the point A = (5,0) and the line x = 1.

(o) All points equidistant.from.the point D = (5,3) and pie line

.3x - 4y + 7 = 0 .

(p) All points equidistant from the line ax + by + c 0 nd the

_point P = (r2s) not off that line..

195 .200 .
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2. 'If A = (-3,1) , B =

(a.) Z.
(b) AB

(c)

= (1.05. find an analytic representation

(d) BC (g). CA .

(e) (h) EZ

(f) (i)

CO the interior of ZAK '.

(k) the interi g Oa . . ,.

`,

or f . i

(1) the interior of LCAB .

the-interior of &ABC .
-

(0 the line through ?A and pirallel to At.

(Q) the line through. B and parallel to

(19 the line through C and parallel to

(q) the line containing altitude'lff of

(r) the line containing altitude..22 of LABC .
..

(s) thelline containing altitude
'

of 6ABC . /

. .

_ (t) the.line containing the median of 6ABC through A .
. .

'(u) the line containing the mediap of QABC. through B .

(v). the lfue containing the median of (16ABC tigrough C .

(w): the imir of lines thiough e and parallel tio the axes.
7.

(x),1 the perpendicularbisector of' Z .

(y) .the pe ndicular.bisectOr o'f Vd .

(z) the circle containing A p B pand C 4

3. The following 'expressions are analytic descriptionilof certain sets. Y

are asked to describe each set in irords,Wving its name, its location on

.the plane, and any specisa geometri propertits it may have. Sketch the
,

grap of each.
a

0 31 = 5

... xa (b). 7 4. 5 5
(k) lx +.5.1 < 4

(0) x
2

= 16 (1) Ix - 41 _

Id)x

2
+ y

2
= 16 (m) xyr = 0,

(e) x
2

+ 9y
*2

. 16 1(n) (x - 1,(y + 2) . 0

(, f) - 9y
2 2

lo
,

(o) x
2

-.3x - 10 = 0x =

. (g) x`-- ,- 9y .{ 16
, /(p)

x < y

(h) 9y - x2 . 16 NY x2
< y

2 .

4

(i) yc - 9x . 16 (/..,)
x < x

2

196 ',
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4. 'Give ierbal descriptions of each.of the seis desCribed aniilytically with
,

polar coordinates belgv. Give its nane if availible, its location on the

plane y and any' special geometric properties it mai-have.

(a) r
2

= 9 (k) r

(b) r
2

< 9 (1) r =

. (c) n<3 (m) r =
.. .

(d) r > 3 (n) .r =

(e) e ., 2 . (0) r

(0 e < ; . (p) .;

.(g) r = 20 (q) r -
. .

(h) r < 0 . . 4 (r) r >

f%

(0 le - (s) r <

'Ci) 1r

Writ

above.

5f < .1

64
sin 0

'Egi7
-2

co-77

cos er'1
cos(e +

4

sin(e

a

(t) r = 0 .

related soolar equatidt or inequality for each part of Exercise.

6. Eliminate tAle parameter in each pair of parametric equations below.

(a). fxs= 1 + t
lY t

(b)' = 2t

y = t + 2

1(c. = T-7-f

1 -

-(ci) x = t
2

+ t,

y = t
3

+ t
2

(e),

0

1
= t 7

2 1
= t

(f) x = 30sin t

.y r cos t

(g) x = 2 + 3 cos t

1
v4 - 5 sin t

(1)' 5x=2 sin t

y = .sin 2t

. .1
-60,-7-7

(i) xr= sin 2t

1
1 .

y = sin --tf
2

,.



7. A. point moves

of 1 linear

usingtseconds

on a line, fram A = (3,7) t.rough ..(0,3) at the rate

unit per s'econd. Write parametric equations for its path,

as units ror the parameter t-.

q
8. A point moves on a line from the o

rate or,. 5 linear units per seconff, ite parlmetrie equationsfor'its

path, using.minutes as units f4the parameter t .
. 1

aa a

through point C = (7,24) at the

9. A point A moves along a 1..ine with tarametric equationp for its

path:
= :1 + 3t

iat
y 3 - t

Rp TL moves along a line with.parametric

.equations ;or itd path:
= 5 2t 7

= 11 +it .
Find d(A,B) b when

wht t 5.; A

10. The path.of P
1

has equations

The path of Pr has equations

gxpress
,

110'

d(P P4). when t 2

equations.

Y.1

t 3 p ahd

in terms of the constants n these

11. Write parametric equations for each path of a point around the rim ora
.

di clock'if the path has the,follawing description (aapUme unit radius): .1.

.

f(d) dtarts'at 12 o'clock position, and moves countercl ckwise at 3 rPs

.

(b) starts at 6 o'clock position and moves

(c) Starts at 4 o'clock position and moves
/

(4) Starts at 9 'clock position and moves

(revolutione per second). .

I.

clockWise at 2 rps. '

counterclockwise at 1 rps.

clockwise at14 rps.

(e) Starts at 8 clock position and moves counterclockwise at
1

rps.

12. ,Find th time and place of the first meeting, assuming a siOhltaneous

. start of the points descIped in EXercise 11: ...

(a) a and p
/ .

, , (0 lz Inde..d

(g). b and -e

(h) c and d 1

P .

e p - (i) t and e+ %

a

1, (11Vir. andc * . e
. 11 1

(b) a and c

(c),,, a ana. d

(d) 'a. and
I

4

4 (!) b and

&

I

2 03
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a.

4
.11111k!

.11P

13. A point is rotating craVrt_lopkwise at 2 Ars at Ltdislance 3 ,from tile

f ,

point 14,5) . 10!-AnapiYtic conditions fo?,itl path.
. t. . , 1 ,.

14 . ,A point Is rotatUrg ticitkwItecift.I.,7ps at a distance of 2 froM.the point
...,-

...
..' -fat

(-1,0) . Find antitaAie &midi ions for its path. ...-. .

.
.. .. -a

...

,

13. We give analyVtigscriitiO if the iptth's of certain points larounkthe'

rim of a clock. Win are'apkea to destribe these parts in wordsi. Aspume
e t

t measured it minut"els (

,(a) ix.= 4 cos 4.mt

ty = 4 sin 41rt

(.P) = 6 cos(ii + fl(t)

ty..= 6 sin( + 61t)

'10.cos(g - lOgt)-

y = 10 sin(g - lOgt)
/.

'(d) jx = 8 ecis(47rt + ./r)
ly . A in(1.1.7rt +'7)

(e) ix =,2 sin 2gt

ly = 2 cos 2gt

40

l6t Find"parametric representations for the ellipses described below:

(a) center at .tha origin, major axis 10 x-axis, minor axis

6 '.

(b) center at the.origin,.x-intercepts 3 p y -intercepts ± .

NY* major axis horizontal, And the4ellipse will -just fit between the.,
so

circles x
2
+ y

2
= 5 and x + y

2
= 6 .

- 2

N
17. A wheel with radius 12 inches turning at the. rate of 3 .,rps, is

4 .24

rolling down a straight, level roads Assume a coordinate system as usual

and write piraMetric cqtati?ns for 1.

a point P bn its rim;

a Point Q, , six inches in from t e rim.0 (A challenge problem.

(a)

(b)

1
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0.602
0.616

0.643

0.656
0.669
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0.1
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Mile
*...M. .

ktural Trigonometric FnnCtions .(BpdiaiO4etteure),

Sine

i 000 .o.000
0.0920

.

.04 , 0.040

.06 o.o6o

.08 o.o80
..10 d.loo

124
.14
.16
.18
.20
.22
.24
.26

0.120
0.146
0:159
6.179
0..199

'0.218
0.238
0.257

.28 0.v6

.30 9.296

.32 '\ 0.315
0.333
6.352

.3 0.371
0.389

.42 0.408

.44 0.426

.46 0.444
04 .48

.50 (.11:c)).

.52 0.497

.54 0.514

.56 0.531
.58 0.548
.6o 0.565,

.62 0.581

.64 0.597

.66 0.613

.68 0.69

.70 0.644

.72 0.659

.74 6.674.

.76 0.689

.78 0.703

.80 '0.717

.82. 0.731

.84 0.745

.86 0.758

.88 0.771

. .90 . 0.783

Cosibe l*Iten't

ib

1 000
le 000
0.999
0.9984

0.955

0.993

'0.990.z

0.980

I.

b.620
, 0%04d
0.Mo .4

0,080
6.10o '

0.121
j0.f41
0.161
'0.182 0
040,

0.976% O.kly "
0.971 . 040454

.0.966 0.266 -.

0.961 ; 0..288

.0.955 . 0.309g -..

0,949
0.943
0.936 .

9.929
0.921

0.331
0.354
0.376

0.399
0.423

0.913' 0.447
0.9Q5 0.471
a. 4;,,., o..495
to. ", 0.521 .

0.878 A . 0.546

0.868
0.858
0.847
0.836
0.825.

-0.814

0.802
c.790
0.778
0.765

0.752
0.738
0.725
0.711
0.697

0.682
0.667
0.652
0.637;
0.622

0.573
0.599
0.627
0.655.
6.684

0.714
0.745
0.776
0.809
0.842

0.877
0.913
0.950
0.989

1.072
1.116
1.162
1.10
1.260
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t

pOtangtfft

*****

-16099'*!
'24.99';

tt.65

9.964

.86:73
7.09

9:6.7
5.495

4.933

4.472

750

3225:40658;8

:3:233

2.504
2.365

2.239
2.124
2.018

' 1.9 21
1.-836

1.747
1.668-

1.595
1.526
1.462

1.401
a.343
-1.289
J.t37
1.187

1.140 r
1.095

1.052
Loll
10.971

0.933

(g)i!
0.794



Table II r
f

*aural Trigonometrio Panotiops (Rsidian PeLeahure)

ta

Rad. Sine

..92 401796
4

.94 ,)0.808

.96 0.819
..98 0.830
1.00 . 0.841 - ..

.,

142 0.852
.

1.04 0.862
( 1.06 0.87-2

1.08 "Ciee82
' 1.10 0.891

1012 b.900

1.16
1.14 0.909

0.917
1.18 0.925
1.20 0.932

1.22 0.939
1.24 0.946
1.26 0.952
1.28 0.958

1.34

0.978
0.973

1.32 0.969

.30 40.96

1.38 0.982
1.140 0.955

1.42 0.989
1.44 A0.991
1.46 0.994
1.48 0.996
1.50 0.997

1.52 0.999
1.54 1.000
1.56 1.000
1.58 1.000
1.60 1.015

^1.62 0.999
1.64 0.998
1.66 0.996
1.68 0.994
1.70 0.992

1.72 0.989
1.74 0.986
1.76 0.982,
1.78 0.978
1,80 0.974

Cosine Tangent

0.606
.

1.313
0.590 1.369
0.574 1.428
0.557 4. 1.491
00 540 1.557

.

0.523 1.628-
0.506 .1.704- ,

0.489 1.784
0.471 1.871
0.454 1.965

0.436 2.066

gt:
2.176
2.296

0.381 2.427 b
0.362 2.572

04344
.

2.1163

6.325 2.912
0.306 3.113
0.287 3.341

0.209
0.229

434..:9;37362

0.248

0.268

0.190 5.177
0.170 5.798

0.150 6.581
0.130 7.602
0.111 8.989
0.091 10.98
0.071 14.10

0.051 19.67
0.031 32.46
0.011 92,62

-0.009 -108.65
-0.029 -34.23

-0.049 -20.31
.0.069 -14.43
-0.089- -11.18
-0.109 -9.12
L0.1.9 -7.697 i

-0.149 -6.652
-0468 -5.853
-0.188 -5:222
-0.208 -4.710
-0. 227 -4.286
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CotaAgent

0.761

9.730
0.700
0.671.

*0.614
0.587
-0.560
0.534
0.509

0.484
0.46o
0.436
0.412
0.389

0.366
0.343
0.321
0.299
0.278

0.256
oe 235

0.214
0.193
0.172

0.152 .
0.132
0.111
0.091
0071

0.051
0.031
0.011

- 0.009

- 0.029

- 0.049

-0.089
- 0.110

- 0.130

- 0.150

-0.1(1

- 0.191

- 0.212

- 0.233
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